Journal of Industrial and Engineering Chemistry, Vol.63, 48-56, July, 2018
Catalytic conversion of glucose into levulinic and formic acids using aqueous Brønsted acid
E-mail:
This study investigated optimized production of levulinic (LA) and formic (FA) acids from glucose using methanesulfonic acid (MSA), a known eco-friendly green catalyst. We employed the Box.Behnken statistical approach to optimize and assess the reciprocal interactions of reaction factors. The proposed optimization achieved 48.95% LA and 50.79% FA yields, with 99.8% glucose conversion and 0.06% 5-HMF yield using 0.25 M glucose, 0.35 M MSA, 181.3 °C for 44.4 min. LA yield increased linearly with increasing the combined severity factor (CSF) until CSF ≈ 3.0, and remained constant with further CSF increase. FA yield peaked at CSF = 3.2, and decreased with further CSF increase. CSF and LA and FA yields were fitted to a non-linear regression model for sigmoidal and peak, respectively, with high R2. Thus, MSA can be effectively employed to produce platform chemicals in the bioenergy field.
Keywords:Levulinic acid;Formic acid;Methanesulfonic acid;Hydrothermal conversion;Combined severity factor
- Bozell JJ, Petersen GR, Green Chem., 12(4), 539 (2010)
- Kamm B, Gruber PR, Kamm M, Biorefineries.Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2006.
- Werpy T, Petersen G, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO, 2004.
- van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
- Rackemann DW, Doherty WOS, Biofuels Bioprod. Biorefin., 5, 198 (2011)
- Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
- Kwon OM, Kim SK, Jeong GT, Bioprocess. Biosyst. Eng., 39, 1173 (2016)
- Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK, J. Appl. Phycol., 24, 857 (2012)
- Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
- Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
- Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
- Kim DH, Lee SB, Kim SK, Park DH, Jeong GT, Bioenergy Res., 9, 1155 (2016)
- Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
- Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
- Chemical Economics Handbook, 2016. Formic Acid. https://www.ihs.com/products/formic-acid-chemical-economics-handbook.html. (Accessed 12 July 2017).
- Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, Biorefineries.Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.139 2006.
- Liu X, Li S, Liu Y, Cao Y, Chin. J. Catal., 36, 1461 (2015)
- Zhou D, Hou Q, Liu W, Ren X, J. Ind. Eng. Chem., 47, 281 (2017)
- Yun J, Jin F, Kishita A, Tohji K, Enomoto H, J. Phys.: Conf. Ser., 215, 012126 (2010)
- Yun J, Li W, Xu Z, Jin FM, Adv. Mater. Res., 860-863, 485 (2014)
- Joo F, ChemSusChem, 1, 805 (2008)
- Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
- Pedersen M, Meyer AS, New Biotechnol., 27(6), 739 (2010)
- Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
- Rasmussen H, Sorensen HR, Meyer AS, Carbohydr. Res., 385, 45 (2014)
- Jeong GT, Biomass Bioenerg., 74, 113 (2015)
- Ya’aini N, Amin NAS, Endud S, Microporous Mesoporous Mater., 171, 14 (2013)
- Ramli NAS, Amin NAS, Bioenergy Res., 10, 50 (2017)