화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.63, 48-56, July, 2018
Catalytic conversion of glucose into levulinic and formic acids using aqueous Brønsted acid
E-mail:
This study investigated optimized production of levulinic (LA) and formic (FA) acids from glucose using methanesulfonic acid (MSA), a known eco-friendly green catalyst. We employed the Box.Behnken statistical approach to optimize and assess the reciprocal interactions of reaction factors. The proposed optimization achieved 48.95% LA and 50.79% FA yields, with 99.8% glucose conversion and 0.06% 5-HMF yield using 0.25 M glucose, 0.35 M MSA, 181.3 °C for 44.4 min. LA yield increased linearly with increasing the combined severity factor (CSF) until CSF ≈ 3.0, and remained constant with further CSF increase. FA yield peaked at CSF = 3.2, and decreased with further CSF increase. CSF and LA and FA yields were fitted to a non-linear regression model for sigmoidal and peak, respectively, with high R2. Thus, MSA can be effectively employed to produce platform chemicals in the bioenergy field.
  1. Bozell JJ, Petersen GR, Green Chem., 12(4), 539 (2010)
  2. Kamm B, Gruber PR, Kamm M, Biorefineries.Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co KGaA, Weinheim, 2006.
  3. Werpy T, Petersen G, NREL/TP-510-35523, National Renewable Energy Laboratory, Golden, CO, 2004.
  4. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
  5. Rackemann DW, Doherty WOS, Biofuels Bioprod. Biorefin., 5, 198 (2011)
  6. Chheda JN, Roman-Leshkov Y, Dumesic JA, Green Chem., 9, 342 (2007)
  7. Kwon OM, Kim SK, Jeong GT, Bioprocess. Biosyst. Eng., 39, 1173 (2016)
  8. Meinita MDN, Kang JY, Jeong GT, Koo HM, Park SM, Hong YK, J. Appl. Phycol., 24, 857 (2012)
  9. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
  10. Pileidis FD, Titirici MM, ChemSusChem, 9, 562 (2016)
  11. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
  12. Kim DH, Lee SB, Kim SK, Park DH, Jeong GT, Bioenergy Res., 9, 1155 (2016)
  13. Omari KW, Besaw JE, Kerton FM, Green Chem., 14, 1480 (2012)
  14. Rackemann DW, Bartley JP, Doherty WOS, Ind. Crop. Prod., 52, 46 (2014)
  15. Chemical Economics Handbook, 2016. Formic Acid. https://www.ihs.com/products/formic-acid-chemical-economics-handbook.html. (Accessed 12 July 2017).
  16. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, Biorefineries.Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp.139 2006.
  17. Liu X, Li S, Liu Y, Cao Y, Chin. J. Catal., 36, 1461 (2015)
  18. Zhou D, Hou Q, Liu W, Ren X, J. Ind. Eng. Chem., 47, 281 (2017)
  19. Yun J, Jin F, Kishita A, Tohji K, Enomoto H, J. Phys.: Conf. Ser., 215, 012126 (2010)
  20. Yun J, Li W, Xu Z, Jin FM, Adv. Mater. Res., 860-863, 485 (2014)
  21. Joo F, ChemSusChem, 1, 805 (2008)
  22. Gernon MD, Wu M, Buszta T, Janney P, Green Chem., 1, 127 (1999)
  23. Pedersen M, Meyer AS, New Biotechnol., 27(6), 739 (2010)
  24. Lee SB, Kim SK, Hong YK, Jeong GT, Algal Res., 13, 303 (2016)
  25. Rasmussen H, Sorensen HR, Meyer AS, Carbohydr. Res., 385, 45 (2014)
  26. Jeong GT, Biomass Bioenerg., 74, 113 (2015)
  27. Ya’aini N, Amin NAS, Endud S, Microporous Mesoporous Mater., 171, 14 (2013)
  28. Ramli NAS, Amin NAS, Bioenergy Res., 10, 50 (2017)