화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.7, 1517-1524, July, 2018
Numerical study on particle deposition in rough channels with large-scale irregular roughness
E-mail:
We studied particle deposition in rough channels, using the W-M fractal function to characterize a largescale irregular surface with a root-mean-square roughness of 0.5mm. The flow was numerically investigated by Reynolds stress model, and the particles were tracked by a Lagrangian particle model. An analysis of the flow field in a rough channel shows that the roughness enhances the max flow velocity and the pressure drop in the channel. It induces several eddies in the concave of the rough surface. We also compared particle deposition in a rough channel with particle deposition in a smooth channel. This comparison shows that the roughness significantly enhances the particle deposition of small particles, but the enhancement decreases with the increase of particle size. Moreover, the particle deposition ratio decreases with increasing flow velocity
  1. Lecrivain G, Barry L, Hampel U, Powder Technol., 258, 134 (2014)
  2. Feng H, Wang C, Huang Y, Korean J. Chem. Eng., 34(11), 2832 (2017)
  3. Lai ACK, Byrne MA, Goddard AJH, J. Aerosol Sci., 32(1), 121 (2001)
  4. Sommerfeld M, Kussin J, Powder Technol., 142(2-3), 180 (2004)
  5. Browne LWB, Atmospheric Environment, 8, 801 (1974)
  6. El-Shobokshy MS, Ismail IA, Atmospheric Environment, 14, 297 (1980)
  7. Wood NB, J. Aerosol Sci., 12, 275 (1981)
  8. El-Shobokshy MS, Atmos. Environ., 17, 639 (1983)
  9. Kussin J, Sommerfeld M, Exp. Fluids, 33, 143 (2002)
  10. Chen Q, Build. Environ., 44, 848 (2009)
  11. Jiang H, Lu L, Sun K, Build. Environ., 45, 1184 (2010)
  12. Sun K, Lu L, Jiang H, Build. Environ., 46, 1251 (2011)
  13. Andarwa S, Tabrizi HB, Korean J. Chem. Eng., 34(5), 1319 (2017)
  14. De Marchis M, Milici B, Sardina G, Napoli E, Int. J. Multiphase Flow, 78, 117 (2016)
  15. Milici B, De Marchis M, Int. J. Heat Fluid Flow, 60, 1 (2016)
  16. Yao J, Fairweather M, Chem. Eng. Sci., 84, 781 (2012)
  17. Lecrivain G, Sevan DM, Thomas B, Hampel U, Adv. Powder Technol., 25(1), 310 (2014)
  18. Tian L, Ahmadi G, J. Aerosol Sci., 38(4), 377 (2007)
  19. Lain S, Sommerfeld M, Kussin J, Int. J. Heat Fluid Flow, 23, 647 (2002)
  20. Lu H, Lu J, Build. Environ., 85, 61 (2015)
  21. Lu H, Lu L, Build. Environ., 92, 317 (2015)
  22. Lu H, Lu L, Build. Environ., 94, 43 (2015)
  23. Lu H, Lu L, Appl. Therm. Eng., 93, 697 (2016)
  24. Mandelbrot BB, Fractals: Form, chance and dimension, Freeman WH & Co., San Francisco (1977).
  25. Chen Y, Fu P, Zhang C, Shi M, Int. J. Heat Fluid Flow, 31, 622 (2010)
  26. Zhang C, Deng Z, Chen Y, Int. J. Heat Mass Transfer, 70, 322 (2014)
  27. Chen Y, Zhang C, Shi M, Peterson GP, Phys. Rev. E, 80, 026301 (2009)
  28. Chen Y, Zhang C, Shi M, Peterson GP, Appl. Phys. Lett., 97, 084101 (2010)
  29. Guo L, Xu H, Gong L, Appl. Therm. Eng., 84, 399 (2015)
  30. Ling FF, Wear, 136, 141 (1990)
  31. Majumdar A, Tien CL, Wear, 136, 313 (1990)
  32. Launder BE, Reece GJ, Rodi W, J. Fluid Mech., 68, 537 (1975)
  33. Launder BE, Spalding DB, Lectures in mathematical models of turbulence, Academic Press, London (1972).
  34. Hinds WC, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1984).
  35. Kim J, Moin P, Moser R, J. Fluid Mech., 177, 133 (1987)
  36. Colebrook CF, White CM, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 161, 367 (1937).
  37. Guha A, J. Aerosol Sci., 28(8), 1517 (1997)
  38. Liu H, Zhang L, Appl. Therm. Eng., 31, 3402 (2011)
  39. Ounis H, Ahmadi G, J. Fluids Eng., 112, 114 (1990)
  40. Kvasnak W, Ahmadi G, Bayer R, Gaynes M, J. Aerosol Sci., 24, 795 (1993)
  41. Sippola MR, Nazaroff WW, Aerosol Sci. Technol., 38, 914 (2004)
  42. Zhang Z, Chen Q, Atmos. Environ., 43, 319 (2009)
  43. Gao N, Niu J, He Q, Zhu T, Wu J, Build. Environ., 48, 206 (2012)