화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.6, 324-329, June, 2018
산소 농도 제어를 통한 NiCrAl 합금 폼 표면의 침상 NiO 보호층 효과
Effect of Needle-Like NiO Protecting Layer on NiCrAl Alloy Foam by Controlled Oxygen Concentration
E-mail:
Needle-like NiO protecting layers on NiCrAl alloy foam, used as support for hydrogen production, are introduced through electroplated Ni and subsequent microwave annealing. To improve the stability of the NiCrAl alloy foam, oxygen concentration of microwave annealing to form a needle-like NiO layer with good chemical stability and corrosion resistance is controlled in a range of 20 and 50 %. As the oxygen concentration increases to 50 %, needle-like NiO forms a dense coating layer on the NiCrAl alloy foam; this layer formation can be attributed to accelerated growth of the (200) plane. In addition, the increased oxygen concentration causes increased NiO/Ni ratio of the resultant coating layer on NiCrAl alloy foam due to improved rate of the oxidation reaction. As a result, the introduction of dense needle-like NiO layers formed at 50 % oxygen concentration improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the electrolyte and the foam. Thus, needle-like NiO can be proposed as a superb protecting layer to improve the chemical stability of NiCrAl alloy form.
  1. Manabe R, Okada S, Inagaki R, Oshima K, Sci. Rep., 6, 38007 (2016)
  2. Go KS, Son SR, Kim SD, Kang KS, Park CS, Int. J. Hydrog. Energy, 34(3), 1301 (2009)
  3. Lee YG, An GH, Ahn HJ, Korean J. Mater. Res., 28, 182 (2018)
  4. Barelli L, Bidini G, Gallorini F, Servili S, Energy, 33, 554 (2018)
  5. Lee YJ, Koo BR, Baek SH, Park MH, Ahn HJ, Korean J. Mater. Res., 25(8), 391 (2015)
  6. Shin DY, Bae JW, Koo BR, Ahn HJ, Korean J. Mater. Res., 27(7), 390 (2017)
  7. Sin DY, Lee EH, Park MH, Ahn HJ, Korean J. Mater. Res., 26(7), 393 (2016)
  8. Ding Y, Alpay E, Chem. Eng. Sci., 55(18), 3929 (2000)
  9. Fjeld HM, Clark D, Tirados IY, Zanon R, et al., Nat. Energy, 2, 923 (2017)
  10. Adris AM, Lim CJ, Grace JR, Chem. Eng. Sci., 52(10), 1609 (1997)
  11. Simpson AP, Lutz AE, Int. J. Hydrog. Energy, 32(18), 4811 (2007)
  12. Choe H, Dunand DC, Acta Mater., 52, 1283 (2004)
  13. Pang Q, Xiu ZY, Wu GH, Jiang LT, Sun DL, Hu ZL, J. Mater. Process. Technol., 212, 2219 (2012)
  14. Choe H, Dunand DC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 384, 184 (2004)
  15. Kucharczyk B, Tylus W, Kepinski L, Appl. Catal. B: Environ., 49, 28 (2004)
  16. Yu XH, Tu ST, Wang ZD, Qi YS, J. Power Sources, 150, 57 (2005)
  17. Kang BH, Park J, Park K, Yoo D, Lee D, Lee D, Korean J. Mater. Res., 26(12), 714 (2016)
  18. Patil RA, Su CW, Chuang CJ, Lai CC, Liou Y, Ma YR, Nanoscale, 8, 12970 (2016)
  19. Song X, Gao L, J. Am. Ceram. Soc., 91, 3465 (2008)
  20. Bhosale MA, Bhanage BM, Adv. Powder Technol., 26(2), 422 (2015)
  21. Wang KC, Shen PS, Li MH, Chen S, Lin MW, Chen P, Guo TF, ACS Appl. Mater. Interfaces, 6, 11851 (2014)
  22. Betancur R, Maymo M, Elias X, Vuong LT, Martorell J, Sol. Energy Mater. Sol. Cells, 95(2), 735 (2011)
  23. Terachi T, Totsuka N, Yamada T, Nakagawa T, Deguchi H, Horiuchi M, Oshitani M, J. Nucl. Sci. Technol., 40, 509 (2003)
  24. Velon A, Olefjord I, Oxid. Met., 56, 415 (2001)
  25. pang Q, Hu ZL, Sun DL, Vacuum, 129, 86 (2016)