Korean Journal of Materials Research, Vol.28, No.6, 355-360, June, 2018
LuNbO4:Yb3+, Tm3+ 형광체의 근적외선 및 청색 발광 특성
Near-Infrared and Blue Emissions of LuNbO4:Yb3+, Tm3+ Phosphors
E-mail:
LuNbO4:0.2Yb3+,xTm3+ powders were prepared using a solid-state reaction process. The effects of the amount of Tm on up-conversion(UC) and down-conversion(DC) luminescence properties are investigated. X-ray diffraction patterns confirm that Yb3+ and Tm3+ ions are successfully incorporated into Lu sites. Under 980 nm excitation, the UC spectra of the powders predominantly exhibit strong near-infrared emission bands that peak at 805 nm, whereas weak 480 nm emission bands are observed as well. The emission bands are assigned to the 1G4→ 3H6 (480 nm) and 3H4→ 3H6 (805 nm) transitions of the Tm3+ ions via an energy transfer from Yb3+ to Tm3+; two- and three-photon UC processes are responsible for the 805 and 480 nm emissions, respectively. The DC emission spectra exhibit blue emission (1D2→ 3F4) of Tm3+ at 458 nm. The amount of Tm affects the emission intensity with the strongest emissions at x = 0.007 and 0.02 for the UC and DC luminescence, respectively. The results demonstrate that LuNbO4:Yb3+,Tm3+ phosphors are suitable for bio-applications.
- Ahn W, Park J, Kim YJ, Sci. Adv. Mater., 8, 2022 (2016)
- Park J, Ahn W, Kim YJ, Sci. Adv. Mater., 8, 2008 (2016)
- Chen J, Liu YG, Fang MH, Huang ZH, Inorg. Chem., 53(21), 11396 (2014)
- Lv WZ, Jiao MM, Zhao Q, Shao BQ, Lu W, You HP, Inorg. Chem., 53(20), 11007 (2014)
- Choi N, Park K, Park B, Zhang X, Kim J, Kung P, Kim SM, J. Lumines., 130, 560 (2010)
- Park JH, Ahn W, Lee EY, Kim YJ, Korean J. Mater. Res., 25(9), 475 (2015)
- Lim CS, Korean J. Mater. Res., 26, 757 (2016)
- Kshetri YK, Joshi B, Kim TH, Lee SW, Mater. Lett., 199, 147 (2017)
- Park J, Kim YJ, Mater. Res. Bull., 96, 270 (2017)
- Lee JS, Kim YJ, Opt. Mater., 33, 1111 (2011)
- Ahn W, Kim YJ, Opt. Mater. Express, 6, 1099 (2016)
- Kwon SH, Kim YJ, ECS J. Solid State Sci. Technol., 2, R223 (2013)
- Singh AK, Singh SK, Gupta BK, Prakasha R, Rai SB, Dalton Trans., 42, 1065 (2013)
- Wang W, Huang W, Ni Y, Lu C, Xu Z, ACS Appl. Mater. Interfaces, 6, 340 (2014)
- Chen G, Ohulchanskyy TY, Kumar R, Agren H, Prasad PN, ACS Nano, 4, 3163 (2010)
- Qiu H, Yang C, Shao W, Damasco J, Wang X, Agren H, Prasad PN, Chen G, Nanomaterials, 4, 55 (2014)
- Boyer JC, Vetrone F, Cuccia LA, Capobianco JA, J. Am. Chem. Soc., 128(23), 7444 (2006)
- Gai S, Yang P, Wang D, Li C, Niu N, He F, Li X, CrystEngComm, 13, 5480 (2011)
- Pandozzi F, Vetrone F, Boyer JC, Naccache R, Capobianco JA, Speghini A, Bettinelli M, J. Phys. Chem. B, 109(37), 17400 (2005)
- Barrera EW, Pujol MC, Diaz F, Choi SB, Rotermund F, Park KH, Jeong MS, Cascales C, Nanotechnology, 22, 075205 (2011)
- Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F, Anal. Chem., 81, 8687 (2009)
- Naccache R, Rodriguez EM, Bogdan N, et al., Cancers, 4, 1067 (2012)
- Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN, Nano Lett., 8, 3834 (2008)
- Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN, Adv. Funct. Mater., 19(6), 853 (2009)
- Jehng JM, Wachs IE, Chem. Mater., 3, 100 (1991)
- Pollnau M, Gamelin DR, Luthi SR, Gudel HU, Phys. Rev. B, 61, 3337 (2000)
- Buth AH, Blasse G, Phys. Status Solidi A-Appl. Res., 64, 669 (1981)