화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.6, 355-360, June, 2018
LuNbO4:Yb3+, Tm3+ 형광체의 근적외선 및 청색 발광 특성
Near-Infrared and Blue Emissions of LuNbO4:Yb3+, Tm3+ Phosphors
E-mail:
LuNbO4:0.2Yb3+,xTm3+ powders were prepared using a solid-state reaction process. The effects of the amount of Tm on up-conversion(UC) and down-conversion(DC) luminescence properties are investigated. X-ray diffraction patterns confirm that Yb3+ and Tm3+ ions are successfully incorporated into Lu sites. Under 980 nm excitation, the UC spectra of the powders predominantly exhibit strong near-infrared emission bands that peak at 805 nm, whereas weak 480 nm emission bands are observed as well. The emission bands are assigned to the 1G4→ 3H6 (480 nm) and 3H4→ 3H6 (805 nm) transitions of the Tm3+ ions via an energy transfer from Yb3+ to Tm3+; two- and three-photon UC processes are responsible for the 805 and 480 nm emissions, respectively. The DC emission spectra exhibit blue emission (1D2→ 3F4) of Tm3+ at 458 nm. The amount of Tm affects the emission intensity with the strongest emissions at x = 0.007 and 0.02 for the UC and DC luminescence, respectively. The results demonstrate that LuNbO4:Yb3+,Tm3+ phosphors are suitable for bio-applications.
  1. Ahn W, Park J, Kim YJ, Sci. Adv. Mater., 8, 2022 (2016)
  2. Park J, Ahn W, Kim YJ, Sci. Adv. Mater., 8, 2008 (2016)
  3. Chen J, Liu YG, Fang MH, Huang ZH, Inorg. Chem., 53(21), 11396 (2014)
  4. Lv WZ, Jiao MM, Zhao Q, Shao BQ, Lu W, You HP, Inorg. Chem., 53(20), 11007 (2014)
  5. Choi N, Park K, Park B, Zhang X, Kim J, Kung P, Kim SM, J. Lumines., 130, 560 (2010)
  6. Park JH, Ahn W, Lee EY, Kim YJ, Korean J. Mater. Res., 25(9), 475 (2015)
  7. Lim CS, Korean J. Mater. Res., 26, 757 (2016)
  8. Kshetri YK, Joshi B, Kim TH, Lee SW, Mater. Lett., 199, 147 (2017)
  9. Park J, Kim YJ, Mater. Res. Bull., 96, 270 (2017)
  10. Lee JS, Kim YJ, Opt. Mater., 33, 1111 (2011)
  11. Ahn W, Kim YJ, Opt. Mater. Express, 6, 1099 (2016)
  12. Kwon SH, Kim YJ, ECS J. Solid State Sci. Technol., 2, R223 (2013)
  13. Singh AK, Singh SK, Gupta BK, Prakasha R, Rai SB, Dalton Trans., 42, 1065 (2013)
  14. Wang W, Huang W, Ni Y, Lu C, Xu Z, ACS Appl. Mater. Interfaces, 6, 340 (2014)
  15. Chen G, Ohulchanskyy TY, Kumar R, Agren H, Prasad PN, ACS Nano, 4, 3163 (2010)
  16. Qiu H, Yang C, Shao W, Damasco J, Wang X, Agren H, Prasad PN, Chen G, Nanomaterials, 4, 55 (2014)
  17. Boyer JC, Vetrone F, Cuccia LA, Capobianco JA, J. Am. Chem. Soc., 128(23), 7444 (2006)
  18. Gai S, Yang P, Wang D, Li C, Niu N, He F, Li X, CrystEngComm, 13, 5480 (2011)
  19. Pandozzi F, Vetrone F, Boyer JC, Naccache R, Capobianco JA, Speghini A, Bettinelli M, J. Phys. Chem. B, 109(37), 17400 (2005)
  20. Barrera EW, Pujol MC, Diaz F, Choi SB, Rotermund F, Park KH, Jeong MS, Cascales C, Nanotechnology, 22, 075205 (2011)
  21. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F, Anal. Chem., 81, 8687 (2009)
  22. Naccache R, Rodriguez EM, Bogdan N, et al., Cancers, 4, 1067 (2012)
  23. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN, Nano Lett., 8, 3834 (2008)
  24. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN, Adv. Funct. Mater., 19(6), 853 (2009)
  25. Jehng JM, Wachs IE, Chem. Mater., 3, 100 (1991)
  26. Pollnau M, Gamelin DR, Luthi SR, Gudel HU, Phys. Rev. B, 61, 3337 (2000)
  27. Buth AH, Blasse G, Phys. Status Solidi A-Appl. Res., 64, 669 (1981)