화학공학소재연구정보센터
Clean Technology, Vol.24, No.2, 105-111, June, 2018
미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조
Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch
E-mail:
초록
본 연구는 입자 내에서 패치의 위치를 정교하게 제어할 수 있는 새로운 친환경 공정기술에 관한 것이다. 물리화학적으로 안정한 소재를 활용한 미세성형 기술과 패치의 위치를 제어할 수 있는 선택적 제거방법을 결합하여 수행하였다. 미세성형 기술에는 이방성 구조의 패치입자의 형상을 안정적으로 구현하기 위하여, perfluoropolyether (PFPE) 마이크로몰드를 사용하였다. 이를 통하여, 소수성의 패치소재가 poly(dimethylsiloxane) (PDMS) 마이크로몰드 내로 확산되는 문제를 극복할 수 있었다. 그리고, 이는 패치의 우수한 형상 안정성과 소수성 패치소재를 이용한 패치입자 제조를 가능하게 하였다. 마지막으로 패치의 위치가 서로 다른 12종의 패치입자를 제조하여 향상된 공정 안정성을 확인하였다. 본 연구에서 제시한 미세성형 기술과 패치의 선택적 제거방법은 패치의 위치가 선택적으로 제어된 이방성의 입자를 적은 공정의 수를 거쳐 빠르게 제조할 수 있는 장점을 가진다. 또한 제조된 패치입자는 방향성이 유도된 자기조립 분야, 조절이 가능한 약물 전달 시스템 등의 다양한 연구에 널리 활용될 수 있으리라 기대한다.
This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.
  1. Langer R, Tirrell DA, Nature, 428, 487 (2004)
  2. Radhakrishnan K, Raichur AM, Chem. Commun., 48, 2307 (2012)
  3. Champion JA, Katare YK, Mitragotri S, J. Cosmet. Sci., 121, 3 (2007)
  4. Tao SL, Desai TA, Adv. Mater., 17(13), 1625 (2005)
  5. Andrianov AK, Payne LG, Adv. Drug Deliv. Rev., 34, 155 (1998)
  6. Fenandez-Rosas E, Gomez R, Ibanez E, Barrios L, Duch M, Esteve J, Plaza JA, Nogues C, Biomed. Microdevices, 12, 371 (2010)
  7. Serda RE, Chiappini C, Fine D, Tasciotti E, Ferrari M, Life Sci., 2, 357 (2010)
  8. Champion JA, Mitragotri S, PNAS, 103(13), 4930 (2006)
  9. Bollhorst T, Rezwan K, Maas M, Chem. Soc. Rev., 46, 2091 (2017)
  10. Brugarolas T, Tu F, Lee D, Soft Matter, 9, 9046 (2013)
  11. Nandiyanto ABD, Suhendi A, Arutanti O, Ogi T, Okuyama K, Langmuir, 29(21), 6262 (2013)
  12. Guo JL, Tardy BL, Christofferson AJ, Dai YL, Richardson JJ, Zhu W, Hu M, Ju Y, Cui JW, Dagastine RR, Yarovsky I, Caruso F, Nat. Nanotechnol., 11(12), 1105 (2016)
  13. Cordeiro J, Zelsmann M, Honegger T, Picard E, Hadji E, Peyrade D, Appl. Surf. Sci., 349, 452 (2015)
  14. Loudet JC, Alsayed AM, Zhang J, Yodh AG, Phys. Rev. Lett., 94, 018301 (2005)
  15. Ross L, Sacanna S, Irvine WT, Chaikin PM, Pine DJ, Philips AP, Soft Matter, 7, 4139 (2011)
  16. Manoharan VN, Elsesser MT, Pine DJ, Science, 301, 483 (2003)
  17. Wang SF, Kudo T, Yuyama K, Sugiyama T, Masuhara H, Langmuir, 32(47), 12488 (2016)
  18. Kang SM, Choi CH, Kim J, Yeom SJ, Lee D, Park BJ, Lee CS, Soft Matter, 12, 5847 (2016)
  19. Kim J, Choi CH, Yeom SJ, Eom N, Kang KK, Lee CS, Langmuir, 33(30), 7503 (2017)
  20. Lee HY, Shin SHR, Drews AM, Chirsan AM, Lewis SA, Bishop KM, ACS Nano, 8(10), 9979 (2014)
  21. Wang Y, Hollingsworth AD, Yang S, Patel S, Pine DJ, Weck M, J. Am. Chem. Soc., 135, 14064 (2013)
  22. Choi CH, Kang SM, Jin SH, Yi H, Lee CS, Langmuir, 31(4), 1328 (2015)
  23. Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ, Nature, 491, 51 (2012)
  24. Cho YS, Yi GR, Kim SH, Jeon SJ, Elsesser MT, Yu H, Yang S, Pine DJ, Chem. Matter., 19, 3183 (2007)
  25. Zheng X, Liu M, He M, Pine DJ, Weck M, Angew. Chem.-Int. Edit., 129, 5599 (2017)
  26. Choi CH, Weitz DA, Lee CS, Adv. Mater., 25(18), 2536 (2013)
  27. Cao X, Li W, Ma T, Dong H, RSC Adv., 5, 79969 (2015)
  28. Choi CH, Lee J, Yoon K, Tripathi A, Stone HA, Weitz DA, Lee CS, Angew. Chem.-Int. Edit., 49, 7748 (2010)
  29. Love JC, Wolfe DB, Jacobs HO, Whitesides GM, Langmuir, 17(19), 6005 (2001)
  30. Williams SS, Retterer S, Lopez R, Ruiz R, Samulski ET, De Simone JM, Nano Lett., 10, 1421 (2010)
  31. Bong KW, Lee J, Doyle PS, Lab Chip, 14, 4680 (2014)
  32. Xia YN, Kim E, Zhao XM, Rogers JA, Prentiss M, Whitesides GM, Science, 273(5273), 347 (1996)
  33. Hwang S, Choi CH, Lee CS, Macromol. Res., 20(4), 422 (2012)
  34. Lee JN, Park C, Whitesides GM, Anal. Chem., 75, 655 (2003)
  35. Fowler SD, Greenspan P, J. Histochem. Cytochem., 33(8), 833 (1985)
  36. Greenspan P, Mayer EP, Fowler SD, J. Cell Biol., 100, 965 (1985)