화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.4, 687-694, July, 2018
다양한 여재를 이용한 자동차 증발가스 저감용 Hydrocarbon-트랩에 대한 연구
The Study on Hydrocarbon Trap Based on Various Media to Reduce Evaporative Emission from Automotive Vehicles
초록
본 논문에서는 자동차의 증발 가스를 효과적으로 감소시킬 수 있는 탄화수소(HC)-트랩을 제조하였다. HC-트랩은 분말화된 네 종류의 활성탄을 함유하는 각각의 수용액에 부직포를 침지시키는 방법으로 제조하였다. 제조된 HC-트랩은 주사 전자 현미경(SEM), porosimeter(기공크기 측정) 및 tensometor(기계적 특성)로 특성을 조사하였다. 또한 증발가스의 흡착성능을 측정하기 위하여 butane working capacity(BWC) 및 차량 증발 배출 시험을 실시하였다. 중간 공극이 높은 경우의 HC-트랩은 높은 BWC 및 낮은 차량 증발 배출량을 보여주었다. 또한 HEEL 안정화 실험에서 상대적으로 크기(5~11 nm)가 작은 중간공극들은 증발가스에 의해 쉽게 포화될 수 있음을 알 수 있었다. 결론적으로 제조된 HC-트랩은 차량 증발가스의 우수한 배출성능과 증발 배출량의 높은 감소를 보여 주었으며, 차량 전체 배출가스 중 18.4 mg의 감소를 나타냈다.
This paper reports on the preparation of hydrocarbon (HC) trap, which can exhibit the capability to effectively reduce evaporative emission from automotive vehicles. The preparation of HC-trap was accomplished by a dipping method which involved the immersion of a nonwoven material in an aqueous solution containing powdered activated carbon. Four kinds of activated carbon are used for HC-trap preparation. HC-traps were then characterized by scanning electron microscopy (SEM), porosimeter (measurement of pore size ) and tensometer (mechanical properties). We conducted butane working capacity (BWC) and vehicle evaporative emission test to check adsorption performance of evaporative emission. Given the high mesopore volume, the HC-traps exhibited high BWC and low vehicle evaporative emissions. It was also revealed that relatively smaller pore size (5~11 nm) of mesopore could be easily saturated by evaporative emissions with HEEL stabilization. Finally, prepared HC-trap showed excellent performance of vehicle evaporative emission test and high reduction of evaporative emissions which showed 18.4 mg of reduction of total vehicle emissions.
  1. Fact sheet EURO/04/05, WHO, Berlin, Copenhagen, Rome (2005).
  2. Hong JH, Kim SK, Han JS, Yeo SY, Lee HK, Seol SH, National Institute of Environmental Research, 11, 148052 (2011)
  3. LMC Automotive, US, Global Light Vehicles 2015 Review and Update, https://www.lmc-auto.com/public-data/(accessed February 18 2016) (2015).
  4. Kim DJ, Lee KS, Hur HC, Choi HS, Lee DC, Cho YS, Trans. KSAE, 17, 74 (2009)
  5. Itakura H, Kato N, Kohama T, Hyoudou Y, Murai T, SAE Transactions, 109, 639 (2000)
  6. Korea Environmental Industry & Technology Institute, South Korea, Status of automotive and international environmental regulations, https://www.eishub.or.kr/envRegulation/specialinfo_view.asp?idx=35611&gotopage=7 (accessed February 18 2016),(2014).
  7. State of California, US, California evaporative emission standards and test procedures and subsequent model motor vehicles, https://www.arb.ca.gov/msprog/evap/evap.htm (accessed October 17 2015) (2015).
  8. Fiho CLS, Furlan C, Lima W, SAE Technical Paper, 2015-36-0180 (2015).
  9. Kobatake Y, Momma K, Elanovan SP, Itabashi K, Okubo T, Ogura M, ChemCatChem, 8, 2516 (2016)
  10. Puertolas B, Navlani-Garcia M, Garcia T, Navarro MV, Lozano-Castello D, Cazorla-Amoros D, J. Hazard. Mater., 279, 527 (2014)
  11. Maggs FAP, Schwabe PH, Williams JH, Nature, 186, 956 (1960)
  12. Wang K, Qiao S, Hu X, Do DD, Adsorption, 7, 51 (2001)
  13. Walton KS, Cavalcante CL, Levan MD, Adsorption, 11, 107 (2005)
  14. Mangun CL, Daley MA, Braatz RD, Carbon, 36, 123 (1998)
  15. Costa E, Calleja G, Domingo F, AIChE J., 31, 982 (1985)
  16. Kim D, Trans. KSAE, 17, 133 (2009)