Polymer(Korea), Vol.42, No.4, 687-694, July, 2018
다양한 여재를 이용한 자동차 증발가스 저감용 Hydrocarbon-트랩에 대한 연구
The Study on Hydrocarbon Trap Based on Various Media to Reduce Evaporative Emission from Automotive Vehicles
초록
본 논문에서는 자동차의 증발 가스를 효과적으로 감소시킬 수 있는 탄화수소(HC)-트랩을 제조하였다. HC-트랩은 분말화된 네 종류의 활성탄을 함유하는 각각의 수용액에 부직포를 침지시키는 방법으로 제조하였다. 제조된 HC-트랩은 주사 전자 현미경(SEM), porosimeter(기공크기 측정) 및 tensometor(기계적 특성)로 특성을 조사하였다. 또한 증발가스의 흡착성능을 측정하기 위하여 butane working capacity(BWC) 및 차량 증발 배출 시험을 실시하였다. 중간 공극이 높은 경우의 HC-트랩은 높은 BWC 및 낮은 차량 증발 배출량을 보여주었다. 또한 HEEL 안정화 실험에서 상대적으로 크기(5~11 nm)가 작은 중간공극들은 증발가스에 의해 쉽게 포화될 수 있음을 알 수 있었다. 결론적으로 제조된 HC-트랩은 차량 증발가스의 우수한 배출성능과 증발 배출량의 높은 감소를 보여 주었으며, 차량 전체 배출가스 중 18.4 mg의 감소를 나타냈다.
This paper reports on the preparation of hydrocarbon (HC) trap, which can exhibit the capability to effectively reduce evaporative emission from automotive vehicles. The preparation of HC-trap was accomplished by a dipping method which involved the immersion of a nonwoven material in an aqueous solution containing powdered activated carbon. Four kinds of activated carbon are used for HC-trap preparation. HC-traps were then characterized by scanning electron microscopy (SEM), porosimeter (measurement of pore size ) and tensometer (mechanical properties). We conducted butane working capacity (BWC) and vehicle evaporative emission test to check adsorption performance of evaporative emission. Given the high mesopore volume, the HC-traps exhibited high BWC and low vehicle evaporative emissions. It was also revealed that relatively smaller pore size (5~11 nm) of mesopore could be easily saturated by evaporative emissions with HEEL stabilization. Finally, prepared HC-trap showed excellent performance of vehicle evaporative emission test and high reduction of evaporative emissions which showed 18.4 mg of reduction of total vehicle emissions.
- Fact sheet EURO/04/05, WHO, Berlin, Copenhagen, Rome (2005).
- Hong JH, Kim SK, Han JS, Yeo SY, Lee HK, Seol SH, National Institute of Environmental Research, 11, 148052 (2011)
- LMC Automotive, US, Global Light Vehicles 2015 Review and Update, https://www.lmc-auto.com/public-data/(accessed February 18 2016) (2015).
- Kim DJ, Lee KS, Hur HC, Choi HS, Lee DC, Cho YS, Trans. KSAE, 17, 74 (2009)
- Itakura H, Kato N, Kohama T, Hyoudou Y, Murai T, SAE Transactions, 109, 639 (2000)
- Korea Environmental Industry & Technology Institute, South Korea, Status of automotive and international environmental regulations, https://www.eishub.or.kr/envRegulation/specialinfo_view.asp?idx=35611&gotopage=7 (accessed February 18 2016),(2014).
- State of California, US, California evaporative emission standards and test procedures and subsequent model motor vehicles, https://www.arb.ca.gov/msprog/evap/evap.htm (accessed October 17 2015) (2015).
- Fiho CLS, Furlan C, Lima W, SAE Technical Paper, 2015-36-0180 (2015).
- Kobatake Y, Momma K, Elanovan SP, Itabashi K, Okubo T, Ogura M, ChemCatChem, 8, 2516 (2016)
- Puertolas B, Navlani-Garcia M, Garcia T, Navarro MV, Lozano-Castello D, Cazorla-Amoros D, J. Hazard. Mater., 279, 527 (2014)
- Maggs FAP, Schwabe PH, Williams JH, Nature, 186, 956 (1960)
- Wang K, Qiao S, Hu X, Do DD, Adsorption, 7, 51 (2001)
- Walton KS, Cavalcante CL, Levan MD, Adsorption, 11, 107 (2005)
- Mangun CL, Daley MA, Braatz RD, Carbon, 36, 123 (1998)
- Costa E, Calleja G, Domingo F, AIChE J., 31, 982 (1985)
- Kim D, Trans. KSAE, 17, 133 (2009)