Korean Journal of Chemical Engineering, Vol.35, No.8, 1735-1740, August, 2018
A visible-light-active BiFeO3/ZnS nanocomposite for photocatalytic conversion of greenhouse gases
E-mail:
Given the changes in environmental conditions in the world, photocatalytic conversion of greenhouse gases is of great interest today. Our aim was to increase the photocatalytic efficiency of BiFeO3/ZnS (p-n heterojunction photocatalyst) by varying the molar ratio of ZnS to perovskite structure of BiFeO3 using hydrothermal synthesis. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), FT-IR spectroscopy showed the small crystal size and suitable distribution of ZnS particles on the BiFeO3 structure. The results of UV-visible, and photoluminescence (PL) spectroscopy analyses showed the good behavior of p-n heterostructure in absorption of visible light and lowering electron-hole recombination. The best visible light photocatalytic efficiency of CO2 reduction, 24.8%, was obtained by an equimolar ratio of BiFeO3/ZnS.
- Chang X, Zheng J, Gondal MA, Ji G, Res. Chem. Intermed., 41(2), 739 (2015)
- Rodhe H, Science, 248, 1217 (1990)
- Im YH, Lee JH, Kang MS, Korean J. Chem. Eng., 34(6), 1669 (2017)
- Subramonian W, Wu TY, Chai SP, J. Environ. Manage., 187, 298 (2017)
- Teh CY, Wu TY, Juan JC, Chem. Eng. J., 317, 586 (2017)
- Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665 (2016)
- Nuraje N, Su K, Nanoscale, 5, 8752 (2013)
- Kim JK, Kim SS, Kim WJ, Mater. Lett., 59, 4006 (2005)
- Gao T, Chen Z, Zhu YX, Niu F, Huang QL, Qin LS, Sun XG, Huang YX, Mater. Res. Bull., 59, 6 (2014)
- Baran T, Wojtyla S, Dibenedetto A, Aresta M, Macyk W, Appl. Catal. B: Environ., 178, 170 (2015)
- Zhang Y, Schultz AM, Salvador PA, Rohrer GS, J. Mater. Chem., 21, 4168 (2011)
- Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopart. Res., 15, 1848 (2013)
- Kaur S, Sharma S, Kansal SK, Superlattices Microstruct., 98, 86 (2016)
- Kashinath L, Namratha K, Byrappa K, J. Alloy. Compd., 695, 799 (2017)
- Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S, J. Nanopartic. Res., 15, 1848 (2013)
- Iranmanesh P, Saeednia S, Nourzpoor M, Chin. Phys. B, 24(4), 046104 (2015)
- Matovic B, Pantic J, Lukovic J, Cebela M, Dmitrovic S, Mirkovic M, Prekajski M, Ceram. Int., 42, 615 (2016)
- Zhang Y, Zheng A, Yang X, He H, Fan Y, Yao C, Cryst. Eng. Comm., 14, 8432 (2012)
- Som KK, Molla S, Bose K, Chaudhuri BK, Phys. Rev. B, 45, 4 (1992)
- Lotey GS, Verma NK, Mater. Sci. Semiconduc. Proces., 21, 206 (2014)
- Cebela M, Zagorac D, Batalovic K, Radkovic J, Stojadinovic B, Spasojevic V, Hercigonja R, Ceram. Int., 43, 1256 (2017)
- Yousefi R, Kamaluddin B, Ghoranneviss M, Hajakbari F, Appl. Surf. Sci., 255(15), 6985 (2009)
- Soga T, Nanostructured materials for solar energy conversion, Elsevier. 1st Ed. (2006).
- Li L, Salvador PA, Rohre GS, Nanoscale, 6, 24 (2014)
- Yazdanpour N, Sharifnia S, Sol. Energy Mater. Sol. Cells, 118, 1 (2013)
- Mahmodi G, Sharifnia S, Madani M, Vatanpour V, Solar Energy, 97, 186 (2013)
- Merajin MT, Sharifnia S, Hosseini SN, Yazdanpour N, J. Taiwan Inst. Chem. Eng., 44, 239 (2013)
- Karamian E, Sharifnia S, J. CO2 Util., 16, 194 (2016)