화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.7, 381-390, July, 2018
Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys
E-mail:
Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don’t exist in the title of articles. However, these keywords related to Fe- SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.
  1. Chang WS, Araki Y, Proc. Inst. Civ. Eng., 169, 87 (2016)
  2. Mishra M, Ravindra AA, Int. J. Struct. Civ. Engg. Res., 3, 96 (2014)
  3. Nikulin I, Sawaguchi T, Ogawa K, Tsuzaki K, Acta Mater., 105, 207 (2016)
  4. Grassel O, Kruger L, Frommeyer G, Meyer L, Int. J. Plast., 16, 1391 (2000)
  5. Sato A, Chishima E, Soma K, Mori T, Acta Metall., 30, 1177 (1982)
  6. Sato A, Yamaji Y, Mori T, Acta Metall., 34, 287 (1986)
  7. Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M, Constr. Build. Mater., 63, 281 (2014)
  8. Huang P, Peng H, Wang S, Zhou T, Wen Y, Mater. Charact., 118, 22 (2016)
  9. Wan J, Chen S, Curr. opin. Solid State Mat. Sci., 9, 303 (2005)
  10. Li H, Dunne D, Kennon N, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 273-275, 517 (1999)
  11. Wen YH, Zhang W, Li N, Peng HB, Xiong LR, Acta Mater., 55, 6526 (2007)
  12. Lee WJ, Weber B, Feltrin G, Czaderski C, Motavalli M, Leinenbach C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 581, 1 (2013)
  13. Otsuka H, Yamada H, Maruyama T, Tanahashi H, Matsuda S, Murakami M, ISIJ Int., 30, 674 (1990)
  14. Druker A, Baruj A, Malarria J, Mater. Charact., 61, 603 (2010)
  15. Jiang B, Qi X, Zhou W, Xi ZL, Hsu TY, Scr. Mater., 34, 1437 (1996)
  16. Kubo H, Nakamura K, Farjami S, Maruyama T, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 378, 343 (2004)
  17. Druker AV, Perotti A, Esquivel I, Malarria J, Mater. Des., 56, 878 (2014)
  18. Lee WJ, Weber B, Leinenbach C, Constr. Build. Mater., 95, 600 (2015)
  19. Bergeon N, Kajiwara S, Kikuchi T, Acta Mater., 48, 4053 (2000)
  20. Baruj A, Kikuchi T, Kajiwara S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 378, 337 (2004)
  21. Wang D, Liu D, Dong Z, Liu W, Chen J, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 315, 174 (2001)
  22. Matsumura O, Sumi T, Tamura N, Sakao K, Furukawa T, Otsuka H, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 279, 201 (2000)
  23. Druker A, La Roca P, Vermaut P, Ochin P, Malarria J, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 556, 936 (2012)
  24. Sawaguchi T, Kikuchi T, Yin F, Kajiwara S, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 438-440, 796 (2006)
  25. Koster M, Lee WJ, Schwarzenberger M, Leinenbach C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 637, 29 (2015)
  26. Fuster V, Druker AV, Baruj A, Malarria J, Bolmaro R, Mater. Charact., 109, 128 (2015)
  27. Kang L, Zhizhong D, Yongchang L, Lin Z, Smart Mater. Struct., 22, 1 (2013)
  28. Kang L, Zhizhong D, Yongchang L, Lin Z, Smart Mater. Struct., 22, 45002 (2013)
  29. Lee WJ, Weber B, Feltrin G, Czaderski C, Motavalli M, Leinenbach C, Smart Mater. Struct., 22, 125037 (2013)
  30. Baruj A, Kikuchi T, Kajiwara S, Shinya N, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 378, 333 (2004)
  31. Sawaguchi T, et al., Mater. Trans., 47, 580 (2006)
  32. Li H, Yin F, Sawaguchi T, Ogawa K, Zhao X, Tsuzaki K, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 494, 217 (2008)
  33. Sawaguchi T, et al., Scr. Mater., 54, 1885 (2006)
  34. Wen YH, Xiong LR, Li N, Zhang W, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 474, 60 (2008)
  35. Lee WJ, Weber B, Feltrin G, Czaderski C, Motavalli M, Leinenbach C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 581, 1 (2013)
  36. Lin HC, Lin KM, Chuang YC, Chou TS, J. Alloy. Compd., 306, 186 (2000)
  37. Sato A, Soma K, Mori T, Acta Metall., 30, 1901 (1982)
  38. Huijun L, “The development of new iron based shape memory alloys,” 1996.
  39. Lin HC, Lin KM, Lin CS, Ouyang TM, Corrosion Sci., 44, 2013 (2002)
  40. Bouraoui T, Jemal F, Zineb TB, Strength Mater., 40, 203 (2008)
  41. Sato A, Kubo H, Maruyama T, Mater. Trans., 47, 571 (2006)
  42. Czaderski C, Weber B, Shahverdi M, Motavalli M, Leinenbach C, Lee W, Smar 2015, no. September, 2015.
  43. Ogawa K, Kajiwara S, Materials Transactions, 34, 1169 (1993)
  44. Sawaguchi T, et al., Scr. Mater., 99, 49 (2015)
  45. Tsuzaki K, Fukuda K, Koyama M, Matsunaga H, Scr. Mater., 113, 6 (2016)
  46. Sawaguchi T, Maruyama T, Otsuka H, Kushibe A, Inoue Y, Tsuzaki K, Mater. Trans., 57, 283 (2016)
  47. Koyama M, Sawaguchi T, Ogawa K, Kikuchi T, Murakami M, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 497, 353 (2008)
  48. Zhang X, Sawaguchi T, Ogawa K, Yin F, Zhao X, J. Alloy. Compd., 577, A533 (2013)
  49. Ritchie RO, Lankford J, Mater. Sci. Eng., 84, 11 (1986)
  50. Sari U, Guler E, Kirindi T, Dikici M, J. Phys. Chem. Solids, 70, 1226 (2009)
  51. Fu H, Li W, Song S, Jiang Y, Xie J, J. Alloy. Compd., 684, 556 (2016)
  52. Lee D, Omori T, Kainuma R, J. Alloy. Compd., 617, 120 (2014)
  53. Geng Y, et al., J. Alloy. Compd., 628, 287 (2015)
  54. Fu H, Zhao H, Song S, Zhang Z, Xie J, J. Alloy. Compd., 686, 1008 (2016)
  55. Torra V, Isalgue A, Lovey FC, Sade M, J. Therm. Anal. Calorim., 119, 1475 (2015)
  56. Fu H, Zhao H, Song S, Zhang Z, Xie J, J. Alloy. Compd., 686, 1008 (2016)
  57. Evirgen A, Ma J, Karaman I, Luo ZP, Chumlyakov YI, Scr. Mater., 67, 475 (2012)
  58. Tseng LW, et al., Acta Mater., 97, 234 (2015)
  59. Ma J, Kockar B, Evirgen A, Karaman I, Luo ZP, Chumlyakov YI, Acta Mater., 60, 2186 (2012)
  60. Krooß P, et al., Acta Mater., 79, 126 (2014)
  61. Chumlyakov YI, Kireeva IV, Kutz OA, Turabi AS, Karaca HE, Karaman I, Scr. Mater., 119, 43 (2016)
  62. Lee D, Omori T, Kainuma R, J. Alloy. Compd., 617, 120 (2014)
  63. Tseng LW, Ma J, Karaman I, Wang SJ, Chumlyakov YI, Scr. Mater., 101, 1 (2015)
  64. Mino J, Komanicky V, Durisin M, Saksl K, Kovac J, Varga R, 51, 2014 (2015).
  65. Niendorf T, et al., Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 46, 2829 (2015)
  66. Ojha A, Sehitoglu H, Int. J. Plast., 86, 93 (2016)
  67. Lodin Z, Blumajer J, Mare V, Acta Histochem., 63, 74 (1978)
  68. Kajiwara S, Kikuchi T, Acta Metall. Mater., 38, 847 (1990)
  69. Karaca HE, Karaman I, Chumlyakov YI, Lagoudas DC, Zhang X, Scr. Mater., 51, 261 (2004)
  70. Craciunescu C, Kishi Y, Lograsso T, Wuttig M, Scr. Mater., 47, 285 (2002)
  71. Karaca HE, Karaman I, Basaran B, Chumlyakov YI, Maier HJ, Acta Mater., 54, 233 (2006)
  72. Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ, Acta Mater., 55, 4253 (2007)
  73. Wuttig M, Li J, Craciunescu C, Scr. Mater., 44, 2393 (2001)
  74. Likhachev AA, Ullakko K, Phys. Lett. A, 275, 142 (2000)
  75. Soderberg O, Liu XW, Yakovenko PG, Ullakko K, Lindroos VK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 273-275, 543 (1999)
  76. Huang X, Chen SP, Hsu TY, Zuyao X, J. Mater. Sci., 39(22), 6857 (2004)
  77. Maji BC, Das CM, Krishnan M, Ray RK, Corrosion Sci., 48, 937 (2006)
  78. Hu BQ, Bai PK, Dong ZZ, Cheng J, Trans. Nonferrous Met. Soc. China English Ed., 19, 149 (2009)
  79. Rovere CAD, Alano JH, Otubo J, Kuri SE, J. Alloy. Compd., 509, 5376 (2011)
  80. Charfi A, Gamaoun F, Bouraoui T, Bradai C, Normand B, 3rd Int. Conf. Manuf. Sci. Eng. ICMSE 2012, 476-478, 2162 (2012).
  81. Rovere CAD, Alano JH, Silva R, Nascente PAP, Otubo J, Kuri SE, Corrosion Sci., 57, 154 (2012)
  82. Della Rovere CA, Alano JH, Silva R, Nascente PAP, Otubo J, Kuri SE, Mater. Chem. Phys., 133(2-3), 668 (2012)
  83. Dong ZZ, Sawaguchi T, Kajiwara S, Kikuchi T, Kim SH, Lee GC, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 438-440, 800 (2006)