화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.28, No.7, 411-416, July, 2018
텅스텐산화물 막의 균일한 표면 형상에 의한 향상된 전기변색 성능
Enhanced Electrochromic Performance by Uniform Surface Morphology of Tungsten Oxide Films
E-mail:
Tungsten oxide(WO3) films with uniform surface morphology are fabricated using a spin-coating method for applications of electrochromic(EC) devices. To improve the EC performances of the WO3 films, we control the heating rate of the annealing process to 10, 5, and 1 oC/min. Compared to the other samples, the WO3 films fabricated at a heating rate of 5 oC/min shows superior EC performances for transmittance modulation(49.5 %), response speeds(8.3 s in a colored state and 11.2 s in a bleached state), and coloration efficiency(37.3 cm2/C). This performance improvement is mainly related to formation of a uniform surface morphology with increased particle size without any cracks by an optimized annealing heating rate, which improves the electrical conductivity and electrochemical activity of the WO3 films. Thus, the WO3 films with a uniform surface morphology prepared by the optimized annealing heating rate can be used as a potential candidate for performance improvement of the EC devices.
  1. Layani M, Darmawan P, Foo WL, Liu L, Kamyshny A, Mandler D, Magdassi S, Lee PS, Nanoscale, 6, 4572 (2014)
  2. Li H, Shi G, Wang H, Zhang Q, Li Y, J. Mater. Chem. A, 2, 11305 (2014)
  3. Stec GJ, Lauchner A, Cui Y, Nordlander P, Halas NJ, ACS Nano, 11, 3254 (2017)
  4. Platt JR, J. Chem. Phys., 34, 862 (1961)
  5. Cai G, Wang J, Lee PS, Accounts Chem. Res., 49, 1469 (2016)
  6. Khoo E, Lee PS, Ma J, J. Eur. Ceram. Soc., 30, 1139 (2010)
  7. Barawi M, Trizio LD, Giannuzzi R, Veramonti G, Manna L, Manca M, ACS Nano, 11, 3576 (2017)
  8. Li Y, Chen D, Caruso RA, J. Mater. Chem. C, 4, 10500 (2016)
  9. Porkodi P, Yegnaraman V, Jeyakumar D, Mater. Res. Bull., 41(8), 1476 (2006)
  10. Caiado M, Machado A, Santos RN, Matos I, Fonseca IM, Ramos AM, Vital J, Valente AA, Castanheiro JE, Appl. Catal. A: Gen., 451, 36 (2013)
  11. Brezesinski T, Rohlfing DF, Sallard S, Antonietti M, Smarsly BM, Small, 2, 1203 (2006)
  12. Mukherjee R, Sahay PP, J. Alloy. Compd., 660, 336 (2016)
  13. Bathe SR, Patil PS, Sol. Energy Mater. Sol. Cells, 91(12), 1097 (2007)
  14. Stanciu LA, Kodash VY, Groza JR, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 32A, 2633 (2001)
  15. Hunge YM, Mahadik MA, Kumbhar SS, Mohite VS, Rajpure KY, Deshpande NG, Moholkar AV, Bhosale CH, Ceram. Int., 42, 789 (2016)
  16. Koo BR, Kim KH, Ahn HJ, Appl. Surf. Sci., 453, 238 (2018)
  17. Koo BR, Ahn HJ, Nanoscale, 9, 17788 (2017)
  18. Burkhardt S, Elm MT, Lani-Wayda B, Klar PJ, Adv. Mater. Interfaces, 5, 170158 (2018)
  19. Song H, Li Y, Lou Z, Xiao M, Hu L, Ye Z, Zhu L, Appl. Catal. B: Environ., 166-167, 112 (2015)
  20. Vemuri RS, Bharathi KK, Gullapalli SK, Ramana CV, ACS Appl. Mater. Interfaces, 2, 2623 (2010)
  21. Hitchman ML, Thin Solid Films, 61, 341 (1979)
  22. Wang K, Zeng P, Zhai J, Liu Q, Electrochem. Commun., 26, 5 (2013)
  23. Zhu JH, Wei SY, Alexander M, Dang TD, Ho TC, Guo ZH, Adv. Funct. Mater., 20(18), 3076 (2010)
  24. Wang CK, Lin CK, Wu CL, Brahma S, Wang SC, Huang JL, Ceram. Int., 39, 4293 (2013)