Korean Chemical Engineering Research, Vol.56, No.4, 447-452, August, 2018
티타니아 나노튜브를 이용한 염료감응 태양전지
Titania Nanotube-based Dye-sensitized Solar Cells
E-mail:
초록
HF, NaF, NH4F와 같이 플루오르 이온(F-)이 함유된 전해질에서 티타늄 금속판을 양극산화시켜 0.34 μm부터 최대 8.9 μm까지 다양한 길이의 티타니아 나노튜브(TNT)를 제조하였다. 양극산화에 의해 제조된 TNT를 450 °C에서 소성시키면 광 활성을 가지는 아나타제 결정이 생성되었다. TNT 기반 염료감응 태양전지(DSSC)는 TNT 길이가 2.5 μm일 때 광전환 효율이 4.71%로 최대를 나타내었다. 이 값은 티타니아 페이스트를 코팅하여 제작한 FTO 기반 DSSC의 광전환 효율 보다 약 18% 높았다. 또한 TNT-DSSC의 단락전류밀도(Jsc)는 9.74 mA/cm2로 FTO-DSSC의 7.19 mA/cm2 보다 약 35% 이상 높았다. TNT-DSSC 태양전지의 광전환 효율이 더 높은 이유는 염료에서 생성된 광전자가 TNT를 통해 전극 표면으로 빨리 전달되어 광전자와 염료가 재결합 되는 것이 억제되었기 때문이다.
Titanium nanotubes (TNT) of various lengths ranging from 0.34 °C to a maximum of 8.9 °Cwere prepared by anodizing a titanium metal sheet in an electrolyte containing fluorine ion (F-) of HF, NaF and NH4F. When TNT prepared by anodizing was calcined at 450 °C, anatase crystals with photo activity were formed. The TNT-based dye-sensitized solar cell (DSSC) showed a maximum conversion efficiency of 4.71% when the TNT length was 2.5 μm. This value was about 18% higher than photo conversion efficiency of the FTO-based DSSC coated with titania paste. And the short circuit current density (Jsc) of the TNT-DSSC was 9.74 mA/cm2, which was about 35% higher than the 7.19 mA/cm2 of FTO-DSSC. The reason for the higher conversion efficiency of TNT-DSSC solar cells is that photoelectrons generated from dyes are rapidly transferred to the electrode surface through TNT, and the recombination of photoelectrons and dyes is suppressed.
- Chapin DM, Fuller CS, Pearson GL, J. Appl. Phys., 25, 676 (1954)
- O'Regan B, Gratzel M, Nature, 335, 737 (1991)
- Rho W, Jeon H, Kim H, Chung W, Suh J, Jun B, J Nanomaterials, 2015, 247689 (2015)
- Kim JS, Sim EJ, Dao VD, Choi HS, Korean Chem. Eng. Res., 54(2), 262 (2016)
- Suzuki Y, Ngamsinlapasathian S, Yoshida R, Yoshikawa S, Central Eur. J. Chem., 4(3), 476 (2006)
- Kim G, Kim K, Cho K, Ryu K, Appl. Chem. Eng., 22, 90 (2011)
- Gratzel M, J. Photochem. Photobiol. A-Chem., 164, 3 (2004)
- Law M, Greene LE, Johnson JC, Saykally R, Yang PD, Nat. Mater., 4(6), 455 (2005)
- Tenne R, Rao CNR, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 362, 2099 (2004)
- Adachi M, Murata Y, Okada I, Yoshikawa S, J. Electrochem. Soc., 150(8), G488 (2003)
- Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
- Lee Y, Jung J, Korean Chem. Eng. Res., 49(1), 28 (2011)
- Lee Y, Jung J, Korean Chem. Eng. Res., 49(5), 652 (2011)
- Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, Latempa TA, Fitzgerald A, Grimes CA, J. Phys. Chem. B, 110(33), 16179 (2006)
- Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA, J. Phys. Chem. C, 111(41), 14992 (2007)