화학공학소재연구정보센터
Advanced Powder Technology, Vol.29, No.7, 1644-1654, 2018
Facile synthesis of nano-TiO2/stellerite composite with efficient photocatalytic degradation of phenol
In this paper, we report a kind of nano-TiO2/stellerite composite with enhanced photoactivity, which was synthesized by a typical homogeneous precipitation method followed by a calcination crystallization process using natural stellerite as support. The as-prepared composites were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The results showed that TiO2 loading amounts and calcination temperatures had significant influence on the adsorption and photocatalytic degradation properties of phenol. Moreover, it was indicated that the TiO2 nanoparticles (NPs) with smaller grain size (around 12.0 nm) and narrower size distributions were uniformly deposited on the surface of stellerite as a layer of film. Compared with commercial P25, the received composite exhibited more superior photocatalytic degradation performance towards phenol. The enhanced photocatalytic degradation performance should result from the better dispersibility of TiO2 NPs and higher separation efficiency of photogenerated electron-hole pairs. This work may set foundation for the practical application of this new composite photocatalyst in the field of wastewater treatment. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.