Advanced Powder Technology, Vol.29, No.6, 1379-1392, 2018
Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: Novel magnetic photocatalysts with drastically enhanced performance under visible-light
Novel g-C3N4/Fe3O4/CuWO4 nanocomposites, as magnetic visible-light-driven photocatalysts, fabricated through a simple refluxing-calcination process. The synthesized photocatalysts were characterized by a series of techniques including XRD, EDX, SEM, TEM, HRTEM, FT-IR, TGA, BET, UV-vis DRS, PL, and VSM. The results showed that heterojunctions are formed between g-C3N4, Fe3O4, and CuWO4, which favor suppression of the photogenerated electron/hole pairs from recombination. The resultant g-C3N4/Fe3O4/CuWO4 (30%) sample exhibited superior photocatalytic performance. The degradation rate constants on the g-C3N4/Fe3O4/CuWO4 (30%) nanocomposite were almost 10.5, 17, 12.5, and 42.5 times higher than those of the pristine g-C3N4 for degradations of RhB, MB, MO, and fuchsine, respectively. Moreover, the photocatalyst was magnetically separated and recycled with negligible loss in the activity, which is important for the sustainable photocatalytic processes. Thus, the ternary nanocomposite could have potential applications in different photocatalytic processes. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.