화학공학소재연구정보센터
Applied Energy, Vol.225, 542-558, 2018
Integrating process optimization with energy-efficiency scheduling to save energy for paper mills
With the surging energy price and environmental concerns, measures to improve energy efficiency have attracted increasing concerns of the manufacture sector, especially energy-intensive manufacturing industries such as tissue paper mills. Energy-efficiency scheduling, as a novel energy-efficient method, has attracted the attention of an increasing number of researchers in recent years. Drying process is the most energy-intensive production process in tissue paper mills, which has a great energy-saving potential. This paper aims to reduce the energy costs for the tissue paper mill, consisting of processing energy cost and set-up energy cost, through integrating drying process optimization with energy-efficient scheduling. First, the energy cost model and the scheduling model were built. Then, the energy cost of the drying process of every job in a given scheduling problem was optimized using particle swarm optimization (PSO). Afterwards, the energy cost was further optimized using energy-efficiency scheduling. In addition, a hybrid non-dominated sorting genetic algorithm II (NSGA-II) was utilized to solve the energy-efficiency scheduling problem. Finally, several real scheduling problems from a real tissue paper mill were addressed using the proposed approach to demonstrate its effectiveness in energy saving. The experiment result showed that there is a great energy-saving potential in the drying process, accounting for up to 12.53% of the total energy consumption. Moreover, the maximum energy saving ratio of the proposed approach could reach 9.03%. On the whole, the proposed approach can provide a new energy-saving method for tissue paper mills or other manufacturing industries.