Biomacromolecules, Vol.19, No.5, 1539-1551, 2018
Synthesis and Assembly of Laccase-Polymer Giant Amphiphiles by Self-Catalyzed CuAAC Click Chemistry
Covalent coupling of hydrophobic polymers to the exterior of hydrophilic proteins would mediate unique macroscopic assembly of bioconjugates to generate amphiphilic superstructures as novel nanoreactors or biocompatible drug delivery systems. The main objective of this study was to develop a novel strategy for the synthesis of protein-polymer giant amphiphiles by the combination of copper-mediated living radical polymerization and azide alkyne cycloaddition reaction (CuAAC). Azide-functionalized succinimidyl ester was first synthesized for the facile introduction of azide groups to proteins such as albumin from bovine serum (BSA) and laccase from Trametes versicolor. Alkyne-terminal polymers with varied hydrophobicity were synthesized by using commercial copper wire as the activators from a trimethylsilyl protected alkyne-functionalized initiator in DMSO under ambient temperature. The conjugation of alkyne-functionalized polymers to the azide-functionalized laccase could be conducted even without additional copper catalyst, which indicated a successful self-catalyzed CuAAC reaction. The synthesized amphiphiles were found to aggregate into spherical nanoparticles in water and showed strong relevance to the hydrophobicity of coupled polymers. The giant amphiphiles showed decreased enzyme activity yet better stability during storage after chemical modification and self-assembly. These findings will deepen our understanding on protein folding, macroscopic self-assembly, and support potential applications in bionanoreactor, enzyme immobilization, and water purification.