Chemical Engineering Research & Design, Vol.133, 264-280, 2018
Integrating crystallization with experimental model parameter determination and modeling into conceptual process design for the purification of complex feed mixtures
In this study, crystallization process simulation combined with experimental model parameter determination at lab-scale is investigated in order to allow the integration of crystallization unit operation into conceptual process design for the purification of complex mixtures and possibly assist in formulation. A one-dimensional population balance model is combined with experiments, which are selected and carried out as a typical example for an industrial fermentation broth (e.g. vanillin), focusing on determination of solubility and growth kinetics as well as kinetics of agglomeration and breakage. Model parameter determination and model validation show that the named effects are adequately described by the model. Hence, model-based process design of purification by crystallization and particle formation enabling integration into formulation considering relevant effects regarding a complex feed mixture becomes possible within a conceptual process design. Further applications are under consideration. (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.