화학공학소재연구정보센터
Chemical Engineering Science, Vol.186, 168-190, 2018
Residence time distribution of particles in circulating fluidized bed risers
Solids Residence Time Distribution (RTD) in Circulating Fluidized Bed (CFB) risers has received increasing attention due to its vital role in determining the operating condition, particle property, and reactor geometry in industrial CFB applications. In recent years, various solids RTD experimental techniques and theoretical models have been utilized and proposed to study CFB risers. Some controversial issues, however, also arose in the open publications. By means of exploring the advantages and disadvantages of each available RTD experimental technique and model when they are applied to particles in CFB risers, this study discussed the primary causes leading to the huge discrepancy in magnitude of solids dispersion coefficient and Peclet number, which can achieve 4 orders or span from 1 to 100. On the basis of the massive experiment data collected from the literature, the variations of average residence time, Peclet number and dispersion coefficient of solids with superficial gas velocity, solids mass flux and solids concentration were presented. By applying the transition of flow regime in CFB mode, we provided a helpful way to explain some existing contradictions in the reported effects of operating conditions on solids RTD. The possible reasons were also summarized to clarify why some researchers measured a double- or multi-peak solids RTD curve and the others could not in a similar situation. (C) 2018 Published by Elsevier Ltd.