화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.28, 12697-12704, 2018
High-performance SOFC based on a novel semiconductor-ionic SrFeO3-delta-Ce0.8Sm0.2O2-delta membrane
The semiconductor-ionic composite membrane has been recently developed for a novel solid oxide fuel cell (SOFC), i.e., the semiconductor-ion membrane fuel cell (SIMFC). In this work, the perovskite-type SrFeO3-delta (SFO) as semiconductor material was composited with ionic conductor Ce0.8Sm0.2O2-delta (SDC) to form the SFO-SDC composite membrane for SIMFCs. The SFO-SDC SIMFCs using the optimized weight ratio of 3:7 SFO-SDC membrane obtained the best performances, 780 mW cm(-2) at 550 degrees C, compared to 348 mW cm(-2) obtained from the pure SDC electrolyte fuel cell. Introduction of SFO into SDC can extend the triple phase boundary and provide more active sites for accelerating the fuel cell reactions, thus significantly enhanced the cell power output. Moreover, SFO was employed as the cathode, and a higher power output, 907 mW cm(-2) was achieved, suggesting that SFO cathode is more compatible for the SFO-SDC system in SIMFCs. This work provides an attractive strategy for the development of low temperature SOFCs. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.