International Journal of Hydrogen Energy, Vol.43, No.27, 12200-12210, 2018
Growth of polyaniline on rGO-Co3S4 nanocomposite for high-performance supercapacitor energy storage
Recently, since the supercapacitors have drawn considerable attention, a vast study have been triggered in order to develop efficient electrodes for responding to the increasing demand of supercapacitors. In this report, a possible approach have been used to prepare a ternary nanocomposite, polyaniline/reduced graphene oxide-cobalt sulfide (PANI/rGO-Co3S4). At first, a simple and inexpensive hydrothermal route has been used for the preparation of cobalt sulfide (Co3S4) on the surface of graphene oxide sheets (rGO-Co3S4). Then, the polyaniline nanorods have been flourished on the surface of rGO-Co3S4 sheets via in situ chemical polymerization of aniline which was synergistically adjoined to the graphene surface. Polyaniline has uniformly covered the surface of the rGO-Co3S4 due to the rational combination of two components. Combining of PANI with rGO-Co3S4 electrode material amplify its electrochemical efficiency in terms of a high specific capacitance of 767 F g(-1) at 1 A g(-1) and 81.7% of specific capacitance maintenance after 5000 cycles due to the creation of synergistic effect. Therefore, the ternary nanocomposite of PANI/rGO-Co3S4 provides a new promising pathway for the expanding of high-performance electrode materials for supercapacitors. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.