Journal of Aerosol Science, Vol.123, 231-244, 2018
Glass-particle adhesion-force-distribution on clean (laboratory) and contaminated (outdoor) surfaces
This paper explores whether laboratory-clean samples are representative of real outdoor surfaces -often covered in dust and other contaminants - with respect to adhesion properties, which ultimately affect particle resuspension. In this study, Atomic Force Microscopy (AFM) was used to measure the adhesion force between a clean, smooth glass particle (5 mu m in diameter) and two glass slides, one prepared according to common laboratory practices (hereafter, clean glass) and a second one left outdoors for six weeks (hereafter, contaminated glass). It was found that the adhesion force distribution was bimodal for the clean glass while it showed three peaks for the contaminated glass. For both surfaces, the adhesion force showed a peak at very low adhesion values (< 100 nN) representing 1.2% of the measurements for the clean glass and 58% for the contaminated glass. This low-adhesion peak is important because it represents the particles that would be resuspended first even in light winds. The low adhesion-force measurements were associated with the presence of contaminants on the surface. Another notable difference between the adhesion force distributions was a long tail at high adhesion forces for clean glass (up to similar to 1900 nN) and the absence of the tail for the contaminated glass, which had a maximum adhesion force of 950 nN. The mean adhesion force on the contaminated glass was also lower than on the clean glass (206 +/- 240 nN vs. 516 +/- 354 nN). These observations indicate that the adhesion force distribution between a 5-mu m smooth and clean glass sphere and the outdoor contaminated glass surface is quite different from that of the clean glass surface. Hence, one should be cautious when using adhesion force measurements from clean surfaces to estimate particle resuspension from outdoor surfaces.
Keywords:Outdoor resuspension;Atomic force microscopy;Adhesion force distribution;Surface roughness distribution;Contaminated surfaces