화학공학소재연구정보센터
Journal of Chemical Technology and Biotechnology, Vol.93, No.7, 1871-1880, 2018
In situ purification of periplasmatic L-asparaginase by aqueous two phase systems with ionic liquids (ILs) as adjuvants
BACKGROUNDL-asparaginase (ASNase) is an important biopharmaceutical used to treat the acute lymphoblastic leukemia (ALL) and lymphosarcoma. Considering its main use in cancer therapy, the most important request for ASNase production is the need for a highly pure biopharmaceutical obtained in the final of the downstream process, which is considered as the crucial step in its production. RESULTSThis work proposes the use of polymer-salt aqueous two-phase systems (ATPS) based on polyethylene glycol and citrate buffer, with ionic liquids (ILs) as adjuvants, combined with the permeabilization of cell membrane using n-dodecane and glycine for the in situ purification of periplasmatic ASNase from Escherichia coli cells. The process proposed was optimized (polymer molecular weight, pH, tie-line length/mixture point, presence, nature and concentration of the adjuvant). The results show that ASNase partitions mostly to the PEG-rich phase, due to hydrophobic interactions between both PEG and enzyme. Remarkably, the addition of 5wt% of 1-butyl-3-methylimidazolium methanesulfonate [C(4)mim][CH3SO3] as adjuvant lead to high recoveries [87.940.03 (%)], purification factors (20.09 +/- 0.35), and a final specific activity SA=3.61 +/- 0.38U mg(-1) protein, from a crude enzyme extract with a SA=0.18 +/- 0.05U mg(-1) protein. Moreover, better results were achieved when a prepurification step consisting of an ammonium sulfate precipitation was combined with the optimized ATPS, achieving an increased SA=22.01 +/- 1.36U mg(-1) protein and PF=173.8. CONCLUSIONSA novel integrated downstream process was successfully implemented for the in situ purification of ASNase from fermentation broth. (c) 2017 Society of Chemical Industry