Journal of Colloid and Interface Science, Vol.526, 51-62, 2018
Miniaturization of thiol-organosilica nanoparticles induced by an anionic surfactant
Thiol-organosilica nanoparticles are a promising nanomaterial for biomedical applications. The enhanced permeability and retention (EPR) effect is useful for tumor targeting within the biomedical applications of nanomaterials, and nanomaterials with a size of less than 200 nm exhibit the maximum EPR effect. However, the synthesis of thiol-organosilica nanoparticles with a diameter of less than 200 nm is not efficient for the yield using the present conventional synthetic methods. Herein, we report the development of an efficient synthetic method of thiol-organosilica nanoparticles with a diameter of less than 200 nm using an anionic surfactant and discuss its mechanism. Compared with the conventional synthetic methods, a greater than 10-fold miniaturization of thiol-organosilica nanoparticles and an approximately 40-fold increase in the production efficiency of small thiol-organosilica nanoparticles were achieved using the sodium dodecyl sulfate (SDS)-addition synthetic method or sodium dodecylbenzenesulfonate (SDBS)-addition synthetic method. This is the first report about the miniaturization of organosilica nanoparticles induced by an anionic surfactant. The SDS-addition synthetic method or SDBS-addition synthetic method will accelerate the biomedical applications of thiol-organosilica nanoparticles. (C) 2018 Elsevier Inc. All rights reserved.
Keywords:Nanoparticles;Silica nanoparticles;Organosilica nanoparticles;Surfactant;Anionic surfactant;Enhanced permeability and retention effect;Micelle;Molecular assembly;Biomedical application