Journal of Polymer Science Part A: Polymer Chemistry, Vol.36, No.13, 2215-2222, 1998
Photolysis of a fluorinated polymer film by vacuum ultraviolet radiation
We studied the photolysis of a fluoroethylene-fluoropropylene copolymer (FEP) film by vacuum ultraviolet (VUV) radiation from a resonance Xe lamp at a wavelength of 147 nm and air pressures of 0.05 and 2.5 Torr. The chemical changes in the FEP surface layer were investigated by Fourier-transform infrared spectroscopy with attenuated total reflection attachment and X-ray photoelectron spectroscopy. Double bonds were found to be the main product in the case of VUV treatment at 0.05 Torr, while photo-oxidation of FEP occurred predominantly by VUV treatment at 2.5 Torr under formation of the -CF2C(O)F group. This oxygen-containing group was more effectively formed in the FEP surface layer by VUV photo-oxidation than by conventional surface oxidation techniques such as treatments by plasma and corona discharge and ozone. Storage of the VUV-treated polymers in air at 50% relative humidity resulted in hydrolysis of -CF2C(O)F to the -CF2COOH group. Substantial improvement of the film wettability was noticed after VUV photo-oxidation. These findings suggest that VUV irradiation provides a high potential for surface modification of fluorinated polymers which are known to be particularly resistant against functionalization by conventional surface modification techniques such as plasma treatment.