화학공학소재연구정보센터
Journal of Materials Science, Vol.53, No.17, 12178-12189, 2018
Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires
Nanostructured hollow carbon spheres (HCNSs), with either carbon nanotube (CNT) or metal oxide nanowire (MONW) decoration on their surface, were synthesized as building materials with a great potential for the next-generation advanced applications. A well-established, polymeric latex NS synthesis method and a simply modified version of a microwave (MW) energy-based carbonization approach, i.e., Poptube, were systematically combined to obtain these HCNSs. Through this simple, facile, affordable and easily scalable "combined synthesis method," it was managed to successfully produce HCNSs with unique morphological, spectroscopic, thermal and elemental features, all of which were strongly supported by both various material characterization test results and the relevant previous literature data. Thus, it is believed that the as-synthesized CNT or MONW decorated HCNSs (CNT-MONW/HCNS) from the above-mentioned method would soon become the materials of preference for the next-generation advanced applications in various science and engineering fields.