Journal of Materials Science, Vol.53, No.14, 9913-9927, 2018
A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications
There is a growing demand for small-caliber tissue-engineered vascular grafts to replace damaged vessels. Fabricated scaffolds are unable to precisely mimic the mechanical properties of native vessels, provide long-term patency and support cell adhesion and growth, in particular support endothelialization. In this study, a new biodegradable poly(ether ester urethane) urea (PEEUU) was synthesized. The synthesized polyurethane was then functionalized by introducing free amino groups through aminolysis for further surface modification by immobilization of biomacromolecules on the surface of vascular grafts. The modified surfaces were then characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, water contact angle measurement and atomic force microscopy. The mechanical properties of the fabricated scaffolds were analyzed, revealing mechanical properties close to that of the natural vessels. Surface modifications led to improved cell-scaffold interactions, showing appropriate cell attachment and function on the scaffolds. A confluent layer of endothelial cells was formed on biomacromolecule-immobilized PEEUU vascular grafts. The preliminary results of this study demonstrated that the new polyurethane modified with biomacromolecules can be considered as a candidate material for vascular tissue engineering application with capability to support endothelialization of fabricated vascular grafts.