화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.122, No.23, 6272-6276, 2018
Role of Solute Attractive Forces in the Atomic-Scale Theory of Hydrophobic Effects
The role that van der Waals (vdW) attractive forces play in the hydration and association of atomic hydrophobic solutes such as argon (Ar) in water is reanalyzed using the local molecular field (LMF) theory of those interactions. In this problem, solute vdW attractive forces can reduce or mask hydrophobic interactions as measured by contact peak heights of the ArAr correlation function compared to reference results for purely repulsive core solutes. Nevertheless, both systems exhibit a characteristic hydrophobic inverse temperature behavior in which hydrophobic association becomes stronger with increasing temperature through a moderate temperature range. The new theoretical approximation obtained here is remarkably simple and faithful to the statistical mechanical LMF assessment of the necessary force balance. Our results extend and significantly revise approximations made in a recent application of the LMF approach to this problem and, unexpectedly, support a theory of nearly 40 years ago.