화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.140, No.27, 8410-8414, 2018
Bioorthogonal Removal of 3-Isocyanopropyl Groups Enables the Controlled Release of Fluorophores and Drugs in Vivo
Dissociative bioorthogonal reactions allow for chemically controlling the release of bioactive agents and reporter probes. Here we describe 3-isocyanopropyl substituents as masking groups that can be effectively removed in biological systems. 3-Isocyanopropyl derivatives react with tetrazines to afford 3-oxopropyl groups that eliminate diverse functionalities. The study shows that the reaction is rapid and can liberate phenols and amines near-quantitatively under physiological conditions. The reaction is compatible with living organisms as demonstrated by the release of a resorufin fluorophore and a mexiletine drug in zebrafish embryos implanted with tetrazine-modified beads. The combined benefits of synthetic ease, rapid kinetics, diversity of leaving groups, high release yields, and structural compactness, make 3-isocyanopropyl derivatives attractive chemical caging moieties for uses in chemical biology and drug delivery.