화학공학소재연구정보센터
Macromolecules, Vol.51, No.10, 3563-3571, 2018
Effect of Corona Block Length on the Structure and Chain Exchange Kinetics of Block Copolymer Micelles
The effect of corona block length on micelle structure and molecular chain exchange kinetics has been investigated for a series of dilute poly(styrene)-b-poly(ethylene-alt-propylene) (SEP) diblock copolymer micelles with constant PS core block length ((NCcore) approximate to 255) but different PEP corona block lengths (< N-corona > = 256-2080), using a combination of dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and time-resolved small-angle neutron scattering (TRSANS). Smaller core radii and aggregation numbers, but significantly thicker corona layers (proportional to N-coronau(0.7)), were observed with increasing corona block length. Furthermore, 2 orders of magnitude more rapid chain exchange was observed in SEP micelles with the longest corona block compared to the shortest. This effect is attributed to the entropic gain arising from the relief of corona chain stretching upon chain expulsion. We further extend a previous theoretical model by explicitly including a corona term associated with the entropy change in the chain exchange process, which successfully explains the influence of the corona blocks on chain exchange. Our results are in excellent agreement with simulation results of Li and Dormidontova but are apparently contradictory with Halperin and Alexander's theory for hairy micelles and with experimental observations in two other systems that the exchange kinetics slow down with increasing corona block length. These discrepancies reveal unanticipated complexity regarding the role of the corona block in chain exchange.