화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.65, 205-212, September, 2018
Nanodiamond/gold nanorod nanocomposites with tunable light-absorptive and local plasmonic properties
E-mail:
Nanodiamonds (NDs) have potential as platform materials for biological and biomedical applications depending on the combinatorial complex designs. Bimetallic nanocomposites with ND and gold nanorods (AuNRs) were synthesized and obtained at tunable UV absorption wavelengths by controlling the aspect ratio of AuNR. The nanodiamond/AuNR nanocomposites (NDAuNR) with fine tuning ultraviolet/visible/near-infrared (UV.vis-NIR) extinction were prepared using a cetyltrimethylammo- nium bromide (CTAB)-surfactant-based seedless growth method. NDAuNRs varied with UV absorption wavelengths and aspect ratios, providing the surface-enhanced Raman scattering (SERS) effect. Compared to AuNR/800 nm with the same UV absorption wavelength, NDAuNR/800 nm showed 12.1% and 9.8% higher SERS intensity ratios of I1620/I520 and I420/I520, respectively, for methylene blue of concentration 10-5 M. The enhanced SERS intensity of NDAuNR/800 nm indicates that electron mobility was facilitated at the interface between ND and AuNRs, and a larger contact area owing to a larger aspect ratio resulted in a higher SERS effect. The study demonstrated that NDAuNR nanocomposites enhanced the photo-responsive reactivity in SERS, resulting in potentially promising biomedical applications in sensor, imaging, and photothermal therapy. NDs provide platform substances to magnify gold resonance.
  1. Huang XH, Neretina S, El-Sayed MA, Adv. Mater., 21(48), 4880 (2009)
  2. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN, Chem. Soc. Rev., 35, 1084 (2006)
  3. Huang XH, El-Sayed IH, Qian W, El-Sayed MA, J. Am. Chem. Soc., 128(6), 2115 (2006)
  4. Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X, ACS Nano, 9, 9199 (2015)
  5. Alexander KD, Skinner K, Zhang SP, Wei H, Lopez R, Nano Lett., 10, 4488 (2010)
  6. Moon H, Kumar D, Kim H, Sim C, Chang JH, Kim JM, Kim H, Lim DK, ACS Nano, 9, 2711 (2015)
  7. Moon GD, Choi SW, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y, J. Am. Ceram. Soc., 133, 4762 (2011)
  8. Song KH, Kim C, Cobley CM, Xia Y, Wang LV, Nano Lett., 9, 183 (2009)
  9. Huang XQ, Tang SH, Liu BJ, Ren B, Zheng NF, Adv. Mater., 23(30), 3420 (2011)
  10. Dong WJ, Li YS, Niu DC, Ma Z, Gu JL, Chen Y, Zhao WR, Liu XH, Liu CS, Shi JL, Adv. Mater., 23(45), 5392 (2011)
  11. Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, Leapman RD, Nie Z, Chen X, Angew. Chem.-Int. Edit., 52, 13958 (2013)
  12. Ke H, Wang J, Tong S, Jin Y, Wang S, Qu E, Bao G, Dai Z, Theranostics, 4, 12 (2013)
  13. Kim YK, Han SW, Min DH, ACS Appl. Mater. Interfaces, 4, 6545 (2012)
  14. Lim DK, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS, Nano Lett., 13, 4075 (2013)
  15. Wang Y, Chen JT, Yan XP, Anal. Chem., 85, 2529 (2013)
  16. Turcheniuk K, Boukherroub R, Szunerits S, J. Mater. Chem. B, 3, 4301 (2015)
  17. Du B, Ma C, Ding G, Han X, Li D, Wang E, Wang J, Small, 13 (2017)
  18. Jiang B, Wu Q, Deng N, Chen Y, Zhang L, Liang Z, Zhang Y, Nanoscale, 8, 4894 (2016)
  19. Chen YW, Liu TY, Chen PJ, Chang PH, Chen SY, Small, 12, 1458 (2016)
  20. Mochalin VN, Shenderova O, Ho D, Gogotsi Y, Nat. Nanotechnol., 7(1), 11 (2012)
  21. Taha-Tijerina JJ, Narayanan TN, Tiwary CS, Lozano K, Chipara M, Ajayan PM, ACS Appl. Mater Interfaces, 6, 4778 (2014)
  22. Panich AM, Shames AI, Sergeev NA, Olszewski M, McDonough JK, Mochalin VN, Gogotsi Y, J. Phys. C, 25, 245303 (2013)
  23. Xiao J, Li JL, Liu P, Yang GW, Nanoscale, 6, 15098 (2014)
  24. Zhang L, Liu H, Huang X, Sun X, Jiang Z, Schlogl R, Su D, Angew. Chem.-Int. Edit., 54, 15823 (2015)
  25. Zhu YS, Lin YM, Zhang BS, Rong JF, Zong BN, Su DS, ChemCatChem., 7, 2840 (2015)
  26. Kuntumalla MK, Srikanth VVS, Ravulapalli S, Gangadharini U, Ojha H, Desai NR, Bansal C, Phys. Chem. Chem. Phys., 17, 21331 (2015)
  27. Lin Y, Su D, ACS Nano, 8, 7823 (2014)
  28. Kim HI, Kim HN, Weon S, Moon GH, Kim JH, Choi W, ACS Catal., 6, 8350 (2016)
  29. Lin YM, Su DS, ACS Nano, 8, 7823 (2014)
  30. Quast AD, Bornstein M, Greydanus BJ, Zharov I, Shumaker-Parry JS, ACS Catal., 6, 4729 (2016)
  31. Zhang LY, Liu HY, Huang X, Sun XP, Jiang Z, Schlogl R, Su DS, Angew. Chem.-Int. Edit., 54, 15823 (2015)
  32. Ali MRK, Snyder B, El-Sayed MA, Langmuir, 28(25), 9807 (2012)
  33. Golubina EV, Lokteva ES, Erokhin AV, Veligzhanin AA, Zubavichus YV, Likholobov VA, Lunin VV, J. Catal., 344, 90 (2016)
  34. Gopalan AI, Lee KP, Komathi S, Biosens. Bioelectron., 26, 1638 (2010)
  35. Liu YM, Chen S, Quan X, Yu HT, Zhao HM, Zhang YB, Chen GH, J. Phys. Chem. C, 117, 14992 (2013)
  36. Naraginti S, Sivakumar A, Spectrochim. Acta, 128, 357 (2014)
  37. Radziuk D, Grigoriev D, Zhang W, Su DS, Mohwald H, Shchukin D, J. Phys. Chem. C, 114, 1835 (2010)
  38. Kuznetsov O, Sun YQ, Thaner R, Bratt A, Shenoy V, Wong MS, Jones J, Billups WE, Langmuir, 28(11), 5243 (2012)
  39. Fedoseeva YV, Bulusheva LG, Okotrub AV, Kanygin MA, Gorodetskiy DV, Asanov IP, Vyalikh DV, Puzyr AP, Bondar VS, Sci. Rep., 5, 9379 (2015)
  40. Kim MC, Lee D, Jeong SH, Lee SY, Kang E, ACS Appl. Mater. Interfaces, 8, 34317 (2016)
  41. Zhou MA, Zhang AH, Dai ZX, Feng YP, Zhang C, J. Phys. Chem. C, 114, 16541 (2010)
  42. Lim DH, Wilcox J, J. Phys. Chem. C, 116, 3653 (2012)
  43. Radnik R, Mohr C, Claus P, Phys. Chem. Chem. Phys., 5, 172 (2003)
  44. Naujok RR, Duevel RV, Corn RM, Langmuir, 9, 1771 (1993)
  45. Orendorff CJ, Gearheart L, Jana NR, Murphy CJ, Phys. Chem. Chem. Phys., 8, 165 (2006)
  46. He YB, Lu GW, Shen HM, Cheng YQ, Gong QH, Appl. Phys. Lett., 107 (2015)
  47. Zhang CY, Gu HM, Zhou L, J. Nanosci. Nanotechnol., 16, 12382 (2016)
  48. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J, Chem. Mater., 21, 4796 (2009)
  49. Gersten J, Nitzan A, J. Chem. Phys., 73, 3023 (1980)