화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.65, 309-317, September, 2018
Graphene nanosheet/polyaniline composite for transparent hole transporting layer
E-mail:
Composites based on graphene and water-dispersible polyaniline-poly(2-acrylamido-2-methyl-1- propanesulfonic acid) complex were shown as materials promising for the development of hole transporting layers (HTLs). By using multimodal atomic force microscopy, transmission electron microscopy, cyclic voltammetry and conductivity measurements, the relationship between the oxidation degree of graphene and the morphology, electrical conductivity and electron energy structure of HTLs was revealed. Utilizing the HTLs in organic solar cells it was shown that graphene nanostacks, rather than oxidized graphene nanostacks, enhanced the performance of the cells by increasing the roughness of the HTL surface, which caused the improvement of the short circuit current.
  1. Kim H, Abdala AA, Macosko CW, Macromolecules, 43(16), 6515 (2010)
  2. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
  3. Zang X, Wang W, Liu C, Tang X, Sens. Actuators B-Chem., 252, 1179 (2017)
  4. Wei J, Zang Z, Zhang Y, Wang M, Du J, Tang X, Opt. Lett., 42, 911 (2017)
  5. Huang H, Zhang J, Jiang L, Zang Z, J. Alloy. Compd., 718, 112 (2017)
  6. Po R, Carbonera C, Bernardi A, Camaioni N, Energy Environ. Sci., 4, 285 (2011)
  7. Huang C, Wu H, Cao Y, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 301 2014.
  8. Wu R, Wang Y, Chen L, Huang L, Chen Y, RSC Adv., 5, 49182 (2015)
  9. Liu J, Durstock M, Dai L, Energy Environ. Sci., 7, 1297 (2014)
  10. Bae S, Lee JU, Park HS, Jung EH, Jung JW, Jo WH, Sol. Energy Mater. Sol. Cells, 130, 599 (2014)
  11. Zampetti A, Fallahpour AH, Dianetti M, Salamandra L, Santoni F, Gagliardi A, Auf der Maur M, Brunetti F, Reale A, Brown TM, Di Carlo A, J. Polym. Sci. B: Polym. Phys., 53(10), 690 (2015)
  12. Huang JS, Miller PF, Wilson JS, de Mello AJ, de Mello JC, Bradley DDC, Adv. Funct. Mater., 15(2), 290 (2005)
  13. Kim Y, Ballantyne AM, Nelson J, Bradley DDC, Org. Electron. Phys. Mater. Appl., 10, 205 (2009)
  14. Zhang FL, Gadisa A, Inganas O, Svensson M, Andersson MR, Appl. Phys. Lett., 84, 3906 (2004)
  15. Kadem B, Cranton W, Hassan A, Org. Electron., 24, 73 (2015)
  16. Woo S, Jeong J, Lyu H, Han Y, Kim Y, Nanoscale Res. Lett., 9, 506 (2014)
  17. Wang X, Hu S, Li Q, Li F, Yao K, Shi M, RSC Adv., 5, 52874 (2015)
  18. Xiao T, Cui W, Anderegg J, Shinar J, Shinar R, Org. Electron. Phys. Mater. Appl., 12, 257 (2011)
  19. Hu ZY, Zhang JJ, Hao ZH, Zhao Y, Sol. Energy Mater. Sol. Cells, 95(10), 2763 (2011)
  20. Iakobson OD, Gribkova OL, Nekrasov AA, Tverskoi VA, Ivanov VF, Mel’nikov PV, Polenov EA, Vannikov AV, Prot. Met. Phys. Chem. Surf., 52, 1005 (2016)
  21. Basavaraja C, Noh GT, Huh DS, Colloid Polym. Sci., 291, 2755 (2013)
  22. Luo J, Jiang SS, Wu Y, Chen ML, Liu XY, J. Polym. Sci. A: Polym. Chem., 50(23), 4888 (2012)
  23. Luo J, Jiang SS, Liu R, Zhang YJ, Liu XY, Electrochim. Acta, 96, 103 (2013)
  24. Wan L, Wang B, Wang SM, Wang XB, Guo ZG, Xiong HY, Dong BH, Zhao L, Lu HB, Xu ZX, Zhang XH, Li TP, Zhou W, React. Funct. Polym., 79, 47 (2014)
  25. Gribkova OL, Nekrasov AA, Trchova M, Ivanov VF, Sazikov VI, Razova AB, Tverskoy VA, Vannikov AV, Polymer, 52(12), 2474 (2011)
  26. Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD, J. Mater. Chem., 22, 12465 (2012)
  27. Posudievsky OY, Khazieieva OA, Cherepanov VV, Koshechko VG, Pokhodenko VD, J. Nanoparticle Res., 15(1-9), 2046 (2013)
  28. Omelchenko OD, Gribkova OL, Tameev AR, Novikov SV, Vannikov AV, Prot. Met. Phys. Chem. Surf., 50, 613 (2014)
  29. Beerbom MM, Lagel B, Cascio AJ, Doran BV, Schlaf R, J. Electron Spectrosc. Relat. Phenom., 512, 12 (2006)
  30. Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
  31. MacDiarmid AG, Epstein AJ, Synth. Met., 69, 85 (1995)
  32. Trasatti S, Pure Appl. Chem., 58, 955 (1986)
  33. Tengstedt C, Crispin A, Hsu C, Zhang C, Parker I, Salaneck W, Fahlman M, Org. Electron., 6, 21 (2005)
  34. Inzelt G, Conducting Polymers: A New Era of Electrochemistry, second ed., Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, doi:http://dx.doi.org/10.1007/978-3-642-27621-7.
  35. Vorotyntsev MA, Heinze J, Electrochim. Acta, 46(20-21), 3309 (2001)
  36. Iakobson OL, Tameev AR, Kravchenko VV, Egorov AV, Vannikov AV, Synth. Met., 211, 89 (2016)
  37. Mativetsky JM, Loo YL, Samori P, J. Mater. Chem. C, 2, 3118 (2014)
  38. Han DH, Park SM, J. Phys. Chem. B, 108(37), 13921 (2004)
  39. Wu CG, Chang SS, J. Phys. Chem. B, 109(2), 825 (2005)
  40. Meshkov GB, Ivanov VF, Yaminsky IV, Polym. Sci. Ser. B, 47, 327 (2005)
  41. Melitz W, Shen J, Lee S, Lee JS, Kummel AC, Droopad R, Yu ET, J. Appl. Phys., 108, 23711 (2010)
  42. Smirnov VA, Denisov NN, Plotnikov VG, Alfimov MV, High Energy Chem., 50, 51 (2016)
  43. Landau LD, Lifshitz EM, Electrostatics of conductors, Electrodynamics of Continuous Media, Volume 8 in Course of Theoretical Physics, Elsevier, pp.1 1984.
  44. Muller-Meskamp L, Kim YH, Roch T, Hofmann S, Scholz R, Eckardt S, Leo K, Lasagni AF, Adv. Mater., 24(7), 906 (2012)
  45. Geethu R, Kartha CS, Vijayakumar KP, Sol. Energy, 120, 65 (2015)