화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.3, 227-238, August, 2018
Numerical study on the mixing in a barrier-embedded partitioned pipe mixer (BPPM) for non-creeping flow conditions
E-mail:
In this paper we investigated numerically the flow and mixing characteristics of the barrier-embedded partitioned pipe mixer (BPPM) in non-creeping flow conditions. Numerical simulations are conducted for three mixing protocols of the BPPM, co-rotational, mirrored co-rotational, and counter-rotational protocols in the range of the Reynolds number (Re), 0.1≤Re≤300, focusing on the effect of the Reynolds number, the barrier height, and the mixing protocols on the mixing in the BPPM. Each mixing protocol creates two crosssectional flow portraits with crossing streamlines. Poincare sections were plotted to investigate the flow system affected by the Reynolds number and the barrier height. Mixing in a specific BPPM is characterized using the intensity of segregation in terms of the compactness and the energy consumption. The dependency of the barrier height and the Reynolds number on the final mixing state of the BPPMs was identified by mixing analyses. The co-rotational protocol results in an efficient mixing in the creeping flow regime. Meanwhile, mirrored co-rotational and counter-rotational protocols, which lead to poor mixing in the creeping flow regime, turned out to be efficient protocols in the higher Reynolds number regime.
  1. Aref H, J. Fluid. Mech., 143, 1 (1984)
  2. Byrde O, Sawley ML, Chem. Eng. J., 72(2), 163 (1999)
  3. Danckwerts PV, Appl. Sci. Res. A., 3, 279 (1952)
  4. Ghanem A, Lemenand T, Della Valle D, Peerhossaini H, Chem. Eng. Res. Des., 92(2), 205 (2014)
  5. Hobbs DM, Muzzio FJ, Chem. Eng. J., 67, 153 (1997)
  6. Hwang WR, Kwon TH, Polym. Eng. Sci., 40(3), 702 (2000)
  7. Jana SC, Tjahjadi M, Ottino JM, AIChE J., 40(11), 1769 (1994)
  8. Jayaraj S, Kang S, Suh YK, J. Mech. Sci. Technol, 21, 536 (2007)
  9. Jung SY, Ahn KH, Kang TG, Park GT, Kim SU, AIChE J., 64(2), 717 (2018)
  10. Kang TG, Hulsen MA, Anderson PD, den Toonder JMJ, Meijer HEH, Chem. Eng. Sci., 62(23), 6677 (2007)
  11. Kang TG, Hulsen MA, Anderson PD, den Toonder JMJ, Meijer HEH, Phys. Rev. E, 76, 066303 (2007)
  12. Kang TG, Singh MK, Anderson PD, Meijer HEH, Microfluid. Nanofluid., 7, 783 (2009)
  13. Kang TG, Singh MK, Kwon TH, Anderson PD, Microfluid. Nanofluid., 4, 589 (2008)
  14. Kang TG, Anderson PD, Micromachines, 5, 1270 (2014)
  15. Khakhar DV, Franjione JG, Ottino JM, Chem. Eng. Sci., 42, 2909 (1987)
  16. Kim DS, Lee SW, Kwon TH, Lee SS, J. Micromech. Microeng., 14, 798 (2004)
  17. Kumar V, Shirke V, Nigam KDP, Chem. Eng. J., 139(2), 284 (2008)
  18. Liu SP, Hrymak AN, Wood PE, AIChE J., 52(1), 150 (2006)
  19. Meijer HEH, Singh MK, Anderson PD, Prog. Polym. Sci, 37, 1333 (2012)
  20. Meng H, Jiang X, Yu Y, Wang Z, Wu J, Korean J. Chem. Eng., 34, 1 (2017)
  21. Metcalfe G, Rudman M, Brydon A, Graham LJW, Hamilton R, AIChE J., 52(1), 9 (2006)
  22. Nguyen NT, Wu Z, J. Micromech. Microeng., 15, R1 (2005)
  23. Ottino JM, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge 1989.
  24. Raza W, Hossain HS, Kim KY, Sens. Actuators B-Chem., 258, 381 (2018)
  25. Stroock AD, Dertinger SK, Ajdari A, Mezic I, Stone HA, Whitesides GM, Science, 295, 647 (2002)
  26. Suh YK, Kang S, Micromachines, 1, 82 (2010)
  27. Viktorov V, Mahmud MR, Visconte C, Micromachines, 6, 1166 (2015)
  28. Wiggins S, Ottino JM, Philos. Trans. R. Soc. A.Math. Phys. Eng. Sci., 362, 937 (2004)