- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.28, No.8, 478-488, August, 2018
해양플랜트용 후판강의 미세조직과 기계적 특성에 미치는 압연 조건의 영향
Effect of Rolling Conditions on Microstructure and Mechanical Properties of Thick Steel Plates for Offshore Platforms
E-mail:
In this study, three kinds of steels are manufactured by varying the rolling conditions, and their microstructures are analyzed. Tensile and Charpy impact tests are performed at room temperature to investigate the correlation between microstructure and mechanical properties. In addition, heat affected zone(HAZ) specimens are fabricated through the simulation of the welding process, and the HAZ microstructure is analyzed. The Charpy impact test of the HAZ specimens is performed at -40 °C to investigate the low temperature HAZ toughness. The main microstructures of steels are quasi-polygonal ferrite and pearlite with fine grains. Because coarse granular bainite forms with an increasing finish rolling temperature, the strength decreases and elongation increases. In the steel with the lowest reduction ratio, coarse granular bainite forms. In the HAZ specimens, fine acicular ferrites are the main features of the microstructure. The volume fraction of coarse bainitic ferrite and granular bainite increases with an increasing finish rolling temperature. The Charpy impact energy at -40 °C decreases with an increasing volume fraction of bainitic ferrite and granular bainite. In the HAZ specimen with the lowest reduction ratio, coarse bainitic ferrite and granular bainite forms and the Charpy impact energy at -40 °C is the lowest.
Keywords:thick steel plates;rolling conditions;tensile properties;charpy impact properties;heat affected zone
- Cheng TC, Yu C, Yang TC, Huang CY, Lin HC, Shiue RK, Arch. Metall. Mater., 63, 167 (2018)
- Liu DS, Li QL, Emi T, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 42, 1349 (2011)
- Zhou YL, Jia T, Zhang XJ, Liu ZY, Misra RDK, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 626, 352 (2015)
- Bramfitt BL, Speer JG, Metall. Trans. A, 21, 817 (1990)
- Chen JH, Kikut Y, Araki T, Yoned M, Matsuda Y, Acta Metall., .0, 1779 (1984)
- Kim CM, Lee JB, Choo WY, Proc. 13th Int. Conf. Offshore and Polar Eng., Honolulu, Hawaii, 90 (2003).
- Kim BC, Lee S, Kim NJ, Lee DY, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 22A, 139 (1991)
- Yurioka N, Weld. World, 35, 375 (1995)
- Dolby RE, Weld. Res. Int., 7, 298 (1977)
- Zhang YU, Li X, Ma H, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 47, 2148 (2016)
- Wang XL, Tsai YT, Yang JR, Wang ZQ, Li XC, Shang CJ, Misra RDK, Weld, World, 61, 1155 (2017)
- Schino AD, Nunzio PED, Mater. Lett., 186, 86 (2017)
- Hamada M, Fukada Y, Komiz Y, ISIJ Int., 35, 1196 (1995)
- Medina SF, ISIJ Int., 39, 930 (1999)
- Chapa M, ISIJ Int., 42, 1288 (2002)
- Schino AD, Guarnaschelli C, Mater. Lett., 63, 1968 (2009)
- Schino AD, Alleva L, Guagnelli M, Mater. Sci. Forum, 860, 715 (2012)
- Yu C, Yang TC, Huang CY, Shiue RK, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 47A, 4777 (2016)
- Dhua SK, Mukerjee D, Sarma DS, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 32A, 2259 (2001)
- Hwang B, Lee CG, Kim SJ, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 42A, 717 (2011)
- Yang TC, Huang CY, Cheng TC, Yu C, Shiue RK, Adv. Mater. Res., 936, 1312 (2014)
- Heigl G, Lengauer H, Hodnik P, Steel Res. Intl., 79, 931 (2008)
- Araki T, Atlas for Bainitic Microstructures, ISIJ, Tokyo, Japan, 1 (1992).
- Krauss G, Thompson SW, ISIJ Int., 35, 937 (1995)
- Bhadeshia HKDH, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., A378, 34 (2004)
- Deng D, Kiyoshima S, Comp.Mater.Sci., 62, 23 (2012)
- Qiu H, Enoki M, Kawaguchi Y, Kishi T, ISIJ Int., 40, 34 (2000)
- Kim NJ, Yang AJ, Thomas G, Metall. Trans. A, 16A, 471 (1985).
- Dieter GE, Mechanical Metallurgy, McGraw-Hill Book Co., New York (1988).
- Krauss G, Steels Processing, Structure, and Performance, Asm Intl. (2005).