Korean Journal of Chemical Engineering, Vol.35, No.9, 1878-1888, September, 2018
Analysis of molar flux and current density in the electrodialytic separation of sulfuric acid from spent liquor using an anion exchange membrane
E-mail:
Separation of sulfuric acid from a dilute solution involved a plate and frame type electrodialysis unit using a commercial anion exchange membrane. Experiments were conducted in batch with catholyte concentrations ranging from 1 to 5 wt%. Effect of applied current density, initial catholyte concentration and initial concentration difference of catholyte and anolyte on the molar flux was studied extensively. The maximum molar flux was estimated to be 10.52 X 10-8 mol cm-2s-1 at 4.45 wt% catholyte concentration and applied current density of 30 mA cm-2. Current efficiencies were observed to be 75 to 85% at lower current density, which rose to more than 100% at 20 and 30mA cm-2, at equal initial concentration of catholyte and anolyte. Diffusive flux and flux due to membrane potential contributed very less compared to total flux in presence of applied electric current. An equation was developed to predict the practical molar fluxes, which fitted satisfactorily with minor standard deviation. Pristine and used membrane specimens were characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).
Keywords:Sulfuric Acid;Electrodialysis;Current Density;Molar Flux;Current Efficiency;Catholyte Concentr
- Agrawal A, Sahu KK, J. Hazard. Mater., 171(1-3), 61 (2009)
- Lopez-Delgado A, Alguacil FJ, Lopez FA, Hydrometallurgy, 45, 97 (1997)
- Ozdemir T, Oztin C, Kincal NS, Chem. Eng. Commun., 193(5), 548 (2006)
- Kerney U, Resour. Conserv. Recycl., 10, 145 (1994)
- Nenov V, Dimitrova N, Dobrevsky I, Hydrometallurgy, 44, 43 (1997)
- Hudson RM, ASM Handbook, 3, 67 (1994)
- Kesieme UK, Aral H, Duke M, Milne N, Cheng CG, Hydrometallurgy, 138, 14 (2013)
- Nath K, Membrane separation processes, PHI, New Delhi, 233 (2017).
- Rodrigues MAS, Bernardes AM, Ferreira JZ, 184 Thorn Hill Road, Warrendale, PA 15086-7528, USA:659-672 (1999).
- Cifuentes L, Crisostomo G, Ibanez JP, Casas JM, Alvarez F, Cifuentes G, J. Membr. Sci., 207(1), 1 (2002)
- Wisniewski J, Wisniewska G, Winnicki T, Desalination, 169(1), 11 (2004)
- Marti-Calatayud MC, Buzzi DC, Garcia-Gabaldon M, Ortega E, Bernardes AM, Tenorio JAS, Perez-Herranz V, Desalination, 343, 120 (2014)
- Marti-Calatayud MC, Garcia-Gabaldon M, Perez-Herranz V, J. Membr. Sci., 443, 181 (2013)
- Buzzi DC, Viegas LS, Rodrigues MAS, Bernardes AM, Tenorio JAS, Miner. Eng., 40, 82 (2013)
- Jaroszek H, Mikołajczak W, Nowak M, Pisarska B, Desalination Water Treatment, 64, 223 (2017)
- Pourcelly G, Tugas I, Gavach C, J. Membr. Sci., 97, 99 (1994)
- Cherif AT, Gavach C, Cohen T, Dagard P, Albert L, Hydrometallurgy, 21, 191 (1988)
- Urano K, Ase T, Naito Y, Desalination, 51, 213 (1984)
- Cherif AT, Gavach C, J. Electroanal. Chem., 265, 143 (1989)
- Koter S, Kultys M, J. Membr. Sci., 318(1-2), 467 (2008)
- Lorrain Y, Pourcelly G, Gavach C, J. Membr. Sci., 110(2), 181 (1996)
- Lorrain Y, Pourcelly G, Gavach C, Desalination, 109(3), 231 (1997)
- Lewis DJ, Tye FL, J. Appl. Chem., 9, 279 (1959)
- Verbrugge MW, Hill RF, J. Electrochem. Soc., 137(4), 1131 (1199)
- Audinosa R, Nassr-allah A, Alvarezb JR, Andresb JL, Alvarezb R, J. Membr. Sci., 76, 147 (1993)
- Luo GS, Pan S, Liu JG, Desalination, 150(3), 227 (2002)
- Kanavova N, Machuca L, Periodica Polytechnica, Chem. Eng., 58(2), 25 (2014).
- Akgemci EG, Ersoz M, Atalay T, J. Sep. Sci. Technol., 39(1), 165 (2004)
- Nasef MM, Saidi H, J. Membr. Sci., 216(1-2), 27 (2003)
- Bartholin M, Makromol. Chem., 182, 2075 (1981)