- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.35, No.9, 1948-1953, September, 2018
Agglomeration characteristics of nano-size TiO2 particles using analytical solution
E-mail:
We developed equations for nano-sized titanium dioxide (TiO2) particles self preserving time (SPT) lag that combines with agglomerate key parameters such as primary particle size (PPS), geometric standard deviation (GSD) and mass fractal dimension (MFD). A statistical formula has been developed that relies on SPT lag as the key parameter of agglomerates. Finally, this research presents the first analytical solution by integrating these key parameters into one formula, which can be utilized as a handy tool to calculate the time for reaching the asymptotic state.
Keywords:Mass Fractal Dimension;Self Preserving Time;Agglomerate;Nanoparticle;Primary Particle Size;Geometric Standard Deviation
- Pratsinis SE, Prog. Energy Combust. Sci., 24(3), 197 (1998)
- Stark WJ, Pratsinis SE, Powder Technol., 126(2), 103 (2002)
- Friedlander SK, Pui DYH, J. Nanopart. Res., 6, 313 (2004)
- Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M, J. Phys. Chem. C, 114, 8814 (2010)
- Schmidt-Ott A, Appl. Phys. Lett., 52, 954 (1988)
- Matsoukas T, Friedlander SK, J. Colloid Interface Sci., 146, 495 (1991)
- Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561 (1991)
- Oh YW, Jeon KJ, Jung AI, Jung YW, Aerosol Sci. Technol., 36, 573 (2002)
- Akhtar MK, Lipscomb GG, Pratsinis SE, Aerosol Sci. Technol., 21, 83 (1994)
- Mountain RD, Mulholland GW, Baum H, J. Colloid Interface Sci., 114, 67 (1986)
- Meakin P, Ramanlal P, Sander LM, Ball RC, Phys. Rev. A, 34, 5091 (1986)
- Schaefer DW, MRS Bull., 13, 22 (1988)
- Whitby KT, Lumped mode aerosol growth model, Particle Technology Laboratory Publication #395, University of Minnesota, Minneapolis (1979).
- Lee KW, Chen H, Aerosol Sci. Technol., 3, 327 (1984)
- Frenklach M, Harris SJ, J. Colloid Interface Sci., 118, 252 (1987)
- Gelbard F, Seinfeld JH, J. Colloid Interface Sci., 78, 485 (1980)
- Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139, 63 (1990)
- Wu MK, Friedlander SK, J. Aerosol Sci., 24, 273 (1993)
- Vemury S, Kusters KA, Pratsinis SE, J. Colloid Interface Sci., 165(1), 53 (1994)
- VEMURY S, PRATSINIS SE, J. Aerosol Sci., 26(2), 175 (1995)
- Lee KW, Curtis LA, Chen H, Aerosol Sci. Technol., 12, 457 (1990)
- Park SH, Lee KW, J. Colloid Interface Sci., 246(1), 85 (2002)
- Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359 (1998)
- Ulrich GD, Subramanian NS, Combust. Sci. Technol., 17, 119 (1977)
- Friedlander SK, Smoke, dust and haze: fundamentals of aerosol dynamics, Oxford Univ. Press, New York (2000).
- Mandelbrot BB, The Fractal Geometry of Nature, Freeman and Co., New York (1982).
- Whitby ER, McMurry PH, Shankar U, Binkowski FS, Modal aerosol dynamics modeling, Computer Sciences Corp., Research Triangle Park (1991).
- Williams MMR, Loyalka SK, Aerosol science: Theory and practice, Pergamon Press, Oxford (1991).
- Park SH, Lee KW, J. Colloid Interface Sci., 233(1), 117 (2001)
- Park SH, Xiang R, Lee KW, J. Colloid Interface Sci., 231(1), 129 (2000)
- Miquel PF, Hung CH, Katz JL, J. Mater. Res., 8, 2404 (1993)
- Backman U, Tapper U, Jokiniemi JK, Synth. Met., 142, 169 (2004)