화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.5, 747-751, September, 2018
레이저 스캐닝 속도가 SLS 3-D 프린팅 융착 형성 층에 미치는 영향
Effect of Laser Scanning Speed on the Formation of Sintered Layer in SLS 3-D Printing
E-mail:
초록
SLS 3-D 프린팅에 의한 고분자 분말 융착 공정에서 레이저 스캐닝 속도가 층 형성에 미치는 영향을 살펴보았다. Galvano 스캐너에 비하여 상대적으로 레이저 스캐닝 속도가 느린 X-Y 스캐너를 사용하는 경우, 레이저가 분말에 조사되는 시간이 길어 융착보다는 용융에 가까운 층 형성이 일어남을 확인하였다. 그 결과, 층 두께는 깊어지고 선폭은 넓어짐을 알 수 있었다. 하지만, 형성 층의 밀도와 치수안정성은 스캐닝 속도에 크게 영향을 받지 않음을 확인하였다. 이와 함께 가해진 에너지 밀도에 따른 융착과 융융에 의한 형성 층의 형태학적 차이에 의하여 구조체의 강도는 현저하게 달라짐을 알 수 있었다.
The effect of laser scanning speed on the formation of sintered layer in SLS 3-D polymer printing was studied. The melting behavior of polymer powders was found in formed layer when X-Y scanner was used in SLS 3-D printing due to the increase of laser exposure time on powder. However, sintering between polymer powders was dominated when Galvano scanner was applied with rapid laser scanning speed. As a result of melting behavior, the layer thickness increased and wide layer width was obtained in the layer made by X-Y scanner. However, the laser scanning speed did not affected the density and dimensional stability of layer, but the difference of flexural strength was noticed between formed layers having sintering and melting appearance of polymer powders.
  1. Deckard C, U.S.Patent 4,863,538 (1989).
  2. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M, Rapid Prototyp. J., 11, 26 (2005)
  3. Kruth JP, Wang X, Laoui T, Froyen L, Assembly Autom., 23, 357 (2003)
  4. Pinkerton AJ, Opt. Laser Technol., 78, 25 (2016)
  5. McAlea KP, Forderhase PF, Ganninger ME, Kunig FW, Angelo J, U.S.Patent 5,733,497 (1998).
  6. Marshall GF, Handbook of Optical and Laser Scanning, Marcel Dekker, New York, 2004.
  7. Beiser L, Johnson B, Handbook of Optics, McGraw-Hill, New York, 1995.
  8. Eshraghi S, Das S, Acta Biomater., 6, 2468 (2010)
  9. Vaezi M, Seitz H, Yang S, Int. J. Adv. Manuf. Technol., 67, 1721 (2013)
  10. Kolan KC, Leu MC, Hilmas GE, Velez M, J. Mech. Behav. Biomed. Mater., 13, 14 (2012)
  11. Amorim FL, Lohrengel A, Neubert V, Higa CF, Czelusniak T, Rapid Prototyp. J., 20, 98 (2014)
  12. Gu D, Shen Y, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 489, 69 (2008)