Polymer(Korea), Vol.42, No.5, 841-848, September, 2018
키토산과 대나무 숯/실리카 혼성체가 보강된 스티렌-부타디엔 고무복합체의 연구
Study on Styrene-Butadiene Rubber Composites Reinforced by Hybrids of Chitosan and Bamboo Charcoal/Silica
E-mail:
초록
키토산-폴리(비닐 알코올)(CS-PVA) 젤 및 충전제[뱀부차콜(BC) 및 실리카(SI)] 첨가에 대한 스티렌-부타디엔 고무의 점탄성 물성을 조사하였다. 스디렌-부타디엔 고무 라텍스에 상호 침투 가교 방법으로 제조된 키토산-PVA-뱀부차콜/실리카(BC/SI-CS-PVA) 혼성체를 혼합하여 고무복합체를 제조하였다. 고무 가공분석기의 변형 스윕(strain sweep) 및 주파수 스윕(frequency sweep) 기능을 사용하여 제조된 복합체(composites) 및 가황체(vulcanizates)의 점탄성을 조사하였다. 주사전자현미경 및 내마모성 측정을 통해서 가교 구성 및 기계적 물성을 확인하였다. 충전제의 종류에 따라서 스티렌-부타디엔 고무의 저장 탄성률(G') 및 탄성 토크(S')는 현저하게 증가하였다. 실험 결과를 통해서 BC-CS-PVA 혼성체가 가장 높은 저장 탄성률(G'), 탄성 토크(S') 및 내마모성의 결과를 보였다. 따라서 BC-CSPVA 혼성체가 SBR 복합체에 가장 좋은 점탄성 물성 및 기계적 물성의 보강 효과를 보였다.
The influences of chitosan-poly(vinyl alcohol) (CS-PVA) gel and different fillers [bamboo charcoal (BC) and silica (SI)] on the viscoelastic properties of styrene-butadiene rubber (SBR) were studied in this work. The chitosan-PVAbamboo charcoal/silica (BC/SI-CS-PVA) hybrid fillers compatibilized SBR composites were fabricated by interpenetrating polymer network (IPN) method. The viscoelastic behaviors of the rubber composites and their vulcanizates were explored using a rubber processing analyzer (RPA) in the modes of strain and frequency sweeps. Storage modulus (G') and elastic torque (S') of the SBR increased significantly with the incorporation of different hybrid filler. BC-CS-PVASBR composite showed the highest storage modulus and elastic torque and abrasion resistance, which means BC-CSPVA hybrid filler could make the best reinforcement of viscoelastic and mechanical properties for SBR material in this research.
- Larsen EC, Walton JH, J. Phys. Chem. A, 44, 70 (1940)
- Xu LX, Xin G, Ryong CU, Polym. Korea, 40(6), 933 (2016)
- Nitayaphat W, Jiratumnukul N, Charuchinda S, Kittinaovarat S, Carbohydr. Polym., 78, 444 (2009)
- Li XX, Oh JH, Kang SH, Jang SH, Lee DH, Cho UR, Polym. Korea, 41(5), 750 (2017)
- Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ, J. Appl. Polym. Sci., 73(1), 113 (1999)
- Schmaljohann D, Adv. Drug Deliv. Rev., 58, 1655 (2006)
- Matricardi P, Meo CD, Coviello T, Hennink WE, Alhaique F, Adv. Drug Deliv. Rev., 65, 1172 (2013)
- Ando T, Skolnick J, Proc. Natl. Acad. Sci. USA, 107, 18457 (2010)
- Li XX, Cho UR, Polym. Korea, 42, 1 (2018)
- Rao KK, Naidu BVK, Subha MCS, Sairam M, Aminabhavi TM, Carbohydr. Polym., 66, 333 (2006)
- Sobhy MS, El-Nashar DE, Maziad NA, Egypt. J. Sol., 26, 241 (2003)
- Ge X, Li MC, Cho UR, Polym. Compos., 36, 1063 (2015)
- Jung DH, Kim D, Lee TB, Choi SB, Yoon JH, Kim J, Choi K, Choi SH, J. Phys. Chem. B, 110(46), 22987 (2006)
- Bohm GA, Tomaszewski W, Cole W, Hogan T, Polymer, 51(9), 2057 (2010)
- Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ, Polymer, 51(15), 3321 (2010)
- Chen YK, Wang YP, Xu CH, J. Macromol. Sci. B, 51, 1921 (2012)
- Wang MJ, Rubber Chem. Technol., 71, 520 (1998)
- Dimitreli G, Thomareis AS, J. Food. Eng., 84, 368 (2008)
- Ge X, Zhang Z, Yu H, Zhang B, Cho UR, Appl. Clay Sci., 157, 274 (2018)
- Durmus A, Kasgoz A, Macosko CW, Polymer, 48(15), 4492 (2007)
- Hu X, Fan J, Yue CY, J. Appl. Polym. Sci., 80(13), 2437 (2001)
- Wang KY, Chen YM, Zhang Y, Polymer, 49(15), 3301 (2008)
- Krishnamoorti R, Yurekli K, Curr. Opin. Colloid Interface Sci., 6, 464 (2001)
- Gan SC, Wu ZL, Xu HL, Song YH, Zheng Q, Macromolecules, 49(4), 1454 (2016)
- Cole KS, Cole RH, J. Chem. Phys., 9, 341 (1941)
- Leopoldes J, Barres C, Leblanc JL, Georget P, J. Appl. Polym. Sci., 91(1), 577 (2004)
- Shadwick RE, J. Appl. Physiol., 68, 1033 (1990)
- Wang MJ, Rubber Chem. Technol., 71, 520 (1998)
- Li Z, Ren W, Chen H, Ye L, Zhang Y, Polym. Int., 61, 531 (2012)
- Luo M, Liao X, Liao S, Zhao Y, J. Polym. Sci., 129, 2313 (2013)
- Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 393, 1 (2005)