Korean Journal of Chemical Engineering, Vol.35, No.10, 2015-2023, October, 2018
Removal of hexavalent chromium ion from aqueous solution using nanoscale zero-valent iron particles immobilized on porous silica support prepared by polymer template method
E-mail:
Porous silica supported nanoscale zero-valent iron was prepared by a polymer template method in order to effectively remove a hexavalent chromium ion (Cr(VI)) in an aqueous solution. It did not show a deterioration of Cr(VI) removal efficiency, which could be caused by the surface oxidation and agglomeration of nanoscale zero-valent iron (NZVI) particles. Porous silica by the polymer template method showed quite unique structure, which we named as quasi-inverse opal silica (QIOS), and it showed high surface area (375.4m2/g) and fine pore size (76.5 nm). NZVI immobilized on the surface of QIOS (NZVI@QIOS) was added to an aqueous Cr(VI) solution at 0.025 g/L, and it showed over 96% Cr(VI) removal efficiency. Such a high removal efficiency of Cr(VI) was maintained over two weeks after preparation (92% after 16 days). Morphology of porous silica supported nanoscale zero-valent iron was analyzed by TEM and FE-SEM. Identification of the reaction compounds produced by the reaction of Cr(VI) and zero-valent iron (Fe(0)) was made by the application of XPS.
Keywords:Diphenylcarbazide Method;Hexavalent Chromium;Nanoscale Zero-valent Iron;Polymer Template;Porous Silica
- O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C, Adv. Water Resour., 51, 104 (2013)
- Rashmi SH, Madhu GM, Kittur AA, Suresh R, Int. J. Curr. Eng. Technol., 1, 37 (2013)
- Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboril R, Karakassides MA, J. Hazard. Mater., 261, 295 (2013)
- Sun X, Yu H, Zheng D, Wang X, Li J, Wang L, Appl. Surf. Sci., 279, 1 (2013)
- Li Y, Ma H, Ren B, Li T, J. Anal. Methods Chem., 2013, 649503 (2013)
- Li YC, Jin ZH, Li TL, Desalination, 288, 118 (2012)
- Li Y, Jin Z, Li T, Xiu Z, Sci. Total Environ., 421-422, 260 (2012)
- Li Y, Jin Z, Li T, Li S, Water Sci. Technol., 63, 2781 (2011)
- Li Y, Li T, Jin Z, J. Environ. Sci., 23, 1211 (2011)
- Oh YJ, Song H, Shin WS, Choi SJ, Kim Y, Chemosphere, 66, 858 (2007)
- Choi KY, Luciani CV, Emdadi L, Lee SY, Baick IH, Lim JS, Macromol. Mater. Eng., 297, 1021 (2012)
- Ashley K, Howe AM, Demange M, Nygren O, J. Environ. Monitor., 5, 707 (2003)
- Dislich H, Angew. Chem.-Int. Edit., 10, 363 (1971)
- Jiang H, Yang X, Chen C, Zhu Y, Li C, New J. Chem., 37, 1578 (2013)
- Mao Z, Wu Q, Wang M, Yang Y, Long J, Chen X, Nanoscale Res. Lett., 9, 501 (2014)
- Sun Y, Li X, Cao J, Zhang W, Wang HP, Adv. Colloid Interface Sci., 120, 47 (2006)
- Ruiz-Baltazar A, Esparza R, Rosas G, Perez R, J. Nanomater., 2015, 1 (2015)
- Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
- Li XQ, Cao JS, Zhang WX, Ind. Eng. Chem. Res., 47(7), 2131 (2008)
- Hou MF, Wan HF, Liu TL, Fan YN, Liu XM, Wang XG, Appl. Catal. B: Environ., 84(1-2), 170 (2008)