화학공학소재연구정보센터
Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.6, 1019-1030, 1996
Physical and Mechanical Characterization of Near-Zero Shrinkage Polybenzoxazines
A new class of phenolic-like thermosetting resins has been developed that is based on the ring-opening polymerization of a benzoxazine precursor. These new materials were developed to combine the thermal properties and flame retardance of phenolics with the mechanical performance and molecular design flexibility of advanced epoxy systems. The polybenzoxazines overcome many of the traditional shortcomings of conventional novolak and resole-type phenolic resins, while retaining their benefits. The physical and mechanical properties of these new polybenzoxazines are investigated and are shown to compare very favorably with those of conventional phenolic and epoxy resins. The ring-opening polymerization of these new materials occurs with either near-zero shrinkage or even a slight expansion upon cure. Dynamic mechanical analysis reveals that these candidates for composite applications possess high moduli and glass transition temperatures, but low crosslink densities. Longterm immersion studies indicate that these materials have a low rate of water absorption and low saturation content. Impact, tensile, and flexural properties are also studied. Results of the dielectric analysis on these polybenzoxazines demonstrate the suitability of these materials for electrical applications.