화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.66, 141-157, October, 2018
Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7 for enhanced solar-light photocatalytic conversions of nitrite and sulfite
E-mail:,
Three Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7, Er3+:Y3Al5O12@NiGa2O4/CoS2/ Bi2Sn2O7 and Er3+:Y3Al5O12@NiGa2O4/MoS2/Bi2Sn2O7, are designed for synchronous conversions of nitrite and sulfite and fabricated by sol-hydrothermal and calcination methods. In these Z-scheme photocatalysts, three narrow band-gap semiconductors as “conductive ladder” are inserted between Er3 +:Y3Al5O12@NiGa2O4 and Bi2Sn2O7 to accelerate the electron transfer from conduction band of Bi2Sn2O7 to valence band of NiGa2O4. Er3+:Y3Al5O12 as an up-conversion luminescence agent (from visible-light to ultraviolet-light) provides enough ultraviolet-light for satisfying the energy demand of wide band-gap NiGa2O4. The prepared photocatalysts are characterized by UV.vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL) spectra. The photocatalytic activity of prepared photocatalysts is evaluated via conversions of nitrite and sulfite under simulated solar-light irradiation. The results show that the prepared Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7, Er3+:Y3Al5O12@NiGa2O4/CoS2/Bi2Sn2O7 and Er3+: Y3Al5O12@NiGa2O4/MoS2/Bi2Sn2O7 composites exhibit the high and stable photocatalytic activity during the conversions of nitrite and sulfite. The highest conversion ratios (86.23% and 94.44%) for nitrite and sulfite can be obtained when the Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7 is adopted as photocatalyst under simulated solar-light irradiation. Meanwhile, the effect of simulated solar-light irradiation time and corresponding reaction kinetics on photocatalytic conversions of nitrite and sulfite are also studied. Subsequently, the study of used times shows that the prepared Z-scheme photocatalysts can be effectively reused without an apparent inactivation on photocatalytic activity. These results demonstrate that the Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7 is a potential Z-scheme photocatalyst to be used in actual conversions of nitrite and sulfite under solar-light irradiation.
  1. Long S, Zhao L, Shi TT, Li JC, Yang JY, Liu HB, Mao GZ, Qiao Z, Yang YK, J. Clean Prod., 172, 2435 (2017)
  2. Wei W, Sun MY, Zhang L, Zhao SF, Wu JD, Wang JP, Sep. Purif. Technol., 189, 32 (2017)
  3. Xiao H, Zhao T, Li CH, Li MY, J. Clean Prod., 165, 1499 (2017)
  4. Xiao SH, Lv XM, Zeng YF, Jin T, Luo L, Zhang BB, Zhang G, Wang YH, Feng L, Zhu Y, Tang F, Chemosphere, 185, 647 (2017)
  5. Hui C, Guo XX, Sun PF, Khan RA, Zhang QC, Liang YC, Zhao YH, Bioresour. Technol., 248, 148 (2018)
  6. Yang XF, Cui Y, Li YX, Zheng LY, Xie LJ, Ning R, Liu Z, Lu JL, Zhang GG, Liu CX, Zhang GY, Spectrochim. Acta A, 137, 1055 (2015)
  7. Zhang HC, Sun CB, Han WJ, Zhang JX, Hou JC, Meat Sci., 136, 30 (2018)
  8. Zhang J, Zhu L, Shi ZY, Gao Y, Chemosphere, 186, 576 (2017)
  9. Kumar A, Triquigneaux M, Madenspache J, Ranguelova K, Bang JJ, Fessler MB, Mason RP, Redox Biol., 15, 327 (2018)
  10. Liu JQ, Cheng X, Zhang YL, Wang XZ, Zou QS, Fu LJ, Microporous Mesoporous Mater., 252, 179 (2017)
  11. Kim HS, Hur SJ, Food Chem., 239, 556 (2018)
  12. Fojt L, Strasak L, Vetterl V, Bioelectrochemistry, 70, 91 (2007)
  13. Tugaoen HO, Herckes P, Hristovski K, Westerhoff P, Appl. Catal. B: Environ., 220, 597 (2018)
  14. Alinat E, Delaunay N, Archer X, Mallet JM, Gareil P, J. Hazard. Mater., 286, 92 (2015)
  15. Azami M, Haghighi M, Allahyari S, Ultrason. Sonochem., 40, 505 (2018)
  16. Martins MA, de Lima BD, Ferreira LP, Colonetti E, Feltrin J, De Noni A, Appl. Surf. Sci., 404, 18 (2017)
  17. Thakur M, Sharma G, Ahamad T, Ghfar A, Pathania D, Naushad M, Colloids Surf. B: Biointerfaces, 157, 456 (2017)
  18. Adamu H, McCue AJ, Taylor RSF, Manyar HG, Anderson JA, Appl. Catal. B: Environ., 217, 181 (2017)
  19. Wang Y, Li B, Li G, Huang Y, Fang D, Wang J, Song Y, J. Ind. Eng. Chem., 47, 74 (2017)
  20. Chu KH, Y LQ, Wang W, Wu D, Chan DKL, Zeng CP, Yip HY, Yu JC, Wong PK, Chemosphere, 183, 219 (2017)
  21. Milis A, Peral J, Domenech X, Oxid. Commun., 17, 163 (1994)
  22. Hunge YM, Mahadik MA, Moholkar AV, Bhosale CH, Appl. Surf. Sci., 420, 764 (2017)
  23. Li YL, Bian YY, Qin HX, Zhang YX, Bian ZF, Appl. Catal. B: Environ., 206, 293 (2017)
  24. Xu LH, Zhou Y, Wu ZJ, Zheng GG, He JJ, Zhou YJ, J. Phys. Chem. Solids, 106, 29 (2017)
  25. Cai T, Liu YT, Wang LL, Zhang SQ, Zeng YX, Yuan JL, Ma JH, Dong WY, Liu CB, Luo SL, Appl. Catal. B: Environ., 208, 1 (2017)
  26. Zhang LL, Feng WH, Wang B, Wang KQ, Gao F, Zhao Y, Liu P, Appl. Catal. B: Environ., 212, 80 (2017)
  27. Ye Y, Zang ZG, Zhou TW, Dong F, Lu SR, Tang XS, Wei W, Zhang YB, J. Catal., 357, 100 (2018)
  28. Huang HJ, Zhang J, Jiang L, Zang ZG, J. Alloy. Compd., 718, 112 (2017)
  29. Wen MQ, Xiong T, Zang ZG, Wei W, Tang XT, Dong F, J. Opt. Soc. Am. A, 24, 10205 (2016)
  30. Lv XJ, Zhou SX, Huang X, Wang CJ, Fu WF, Appl. Catal. B: Environ., 182, 220 (2016)
  31. Hu CH, Zhuang J, Zhong LS, Zhong Y, Wang DH, Zhou HY, Appl. Surf. Sci., 426, 1173 (2017)
  32. Wang GW, Li SY, Ma X, Qiao J, Li GS, Zhang HB, Wang J, Song YT, Ultrason. Sonochem., 45, 150 (2018)
  33. Wang GW, Ma X, Wei SN, Li SY, Qiao J, Wang J, Song YT, J. Power Sources, 373, 161 (2018)
  34. Cho KH, Sung YM, Nano Energy, 36, 176 (2017)
  35. Sun MX, Wang Y, Fang YL, Sun SF, Yu ZS, J. Alloy. Compd., 684, 335 (2016)
  36. Zhu L, Jo SB, Ye S, Ullah K, Meng ZD, Oh WC, J. Ind. Eng. Chem., 22, 264 (2015)
  37. Rajamanickam D, Dhatshanamurthi P, Shanthi M, Mater. Res. Bull., 61, 439 (2015)
  38. Zhou Y, Wei SN, Li SY, Liu XD, Shu XQ, Zhang X, Zhao C, Qu ZP, Fang DW, Zhang ZH, Wang J, Int. J. Hydrog. Energy, 42(26), 16362 (2017)
  39. Wang GW, Huang YY, Li GS, Zhang HS, Wang YD, Li BW, Wang J, Song YT, Ultrason. Sonochem., 38, 335 (2017)
  40. Zhao XJ, Yu JJ, Cui HD, Wang TH, J. Photochem. Photobiol. A-Chem., 335, 130 (2017)
  41. Torki F, Faghihian H, J. Photochem. Photobiol. A-Chem., 338, 49 (2017)
  42. Hu JD, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM, Appl. Catal. B: Environ., 217, 224 (2017)
  43. Meng ZD, Ullah K, Zhu L, Ye S, Oh WC, Mater. Sci. Semicond. Process, 27, 173 (2014)
  44. Guo YW, Li Y, Li SG, Zhang L, Li Y, Wang J, Energy, 82, 72 (2015)
  45. Xue H, Li ZH, Ding ZX, Wu L, Wang XX, Fu XZ, Cryst. Growth Des., 8, 4511 (2008)
  46. Tian QF, Zhuang JD, Wang JX, Xie LY, Liu P, Appl. Catal. A: Gen., 425-426, 74 (2012)
  47. Cui Y, Zhou CW, Li XZ, Gao Y, Zhang J, Electrochim. Acta, 228, 428 (2017)
  48. Liu H, Jin ZT, Su Y, Wang Y, Sep. Purif. Technol., 142, 25 (2015)
  49. Derikvandi H, Nezamzadeh-Ejhieh A, J. Colloid Interface Sci., 490, 652 (2017)
  50. Mathur BS, Barth S, Shen H, Chem. Vap. Deposition, 1, 11 (2005)
  51. Lee JH, Kim SI, Park SM, Kang M, Ceram. Int., 43, 1768 (2017)
  52. Zhao XJ, Lv X, Cui HD, Wang TH, J. Colloid Interface Sci., 507, 260 (2017)
  53. Zeng XJ, Yang B, Li XP, Yu RH, Electrochim. Acta, 240, 341 (2017)
  54. Wan J, Du X, Liu EZ, Hu Y, Fan J, Hu XY, J. Catal., 345, 281 (2017)
  55. Raja VR, Rosaline DR, Suganthi A, Rajarajan M, Solid State Sci., 67, 99 (2017)