Journal of Industrial and Engineering Chemistry, Vol.66, 141-157, October, 2018
Three narrow band-gap semiconductors modified Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/(NiS, CoS2 or MoS2)/Bi2Sn2O7 for enhanced solar-light photocatalytic conversions of nitrite and sulfite
E-mail:,
Three Z-scheme photocatalysts, Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7, Er3+:Y3Al5O12@NiGa2O4/CoS2/ Bi2Sn2O7 and Er3+:Y3Al5O12@NiGa2O4/MoS2/Bi2Sn2O7, are designed for synchronous conversions of nitrite and sulfite and fabricated by sol-hydrothermal and calcination methods. In these Z-scheme photocatalysts, three narrow band-gap semiconductors as “conductive ladder” are inserted between Er3 +:Y3Al5O12@NiGa2O4 and Bi2Sn2O7 to accelerate the electron transfer from conduction band of Bi2Sn2O7 to valence band of NiGa2O4. Er3+:Y3Al5O12 as an up-conversion luminescence agent (from visible-light to ultraviolet-light) provides enough ultraviolet-light for satisfying the energy demand of wide band-gap NiGa2O4. The prepared photocatalysts are characterized by UV.vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL) spectra. The photocatalytic activity of prepared photocatalysts is evaluated via conversions of nitrite and sulfite under simulated solar-light irradiation. The results show that the prepared Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7, Er3+:Y3Al5O12@NiGa2O4/CoS2/Bi2Sn2O7 and Er3+: Y3Al5O12@NiGa2O4/MoS2/Bi2Sn2O7 composites exhibit the high and stable photocatalytic activity during the conversions of nitrite and sulfite. The highest conversion ratios (86.23% and 94.44%) for nitrite and sulfite can be obtained when the Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7 is adopted as photocatalyst under simulated solar-light irradiation. Meanwhile, the effect of simulated solar-light irradiation time and corresponding reaction kinetics on photocatalytic conversions of nitrite and sulfite are also studied. Subsequently, the study of used times shows that the prepared Z-scheme photocatalysts can be effectively reused without an apparent inactivation on photocatalytic activity. These results demonstrate that the Er3+:Y3Al5O12@NiGa2O4/NiS/Bi2Sn2O7 is a potential Z-scheme photocatalyst to be used in actual conversions of nitrite and sulfite under solar-light irradiation.
Keywords:Narrow band-gap semiconductor;Z-scheme photocatalyst;Solar-light photocatalytic conversion;Nitrite;Sulfite
- Long S, Zhao L, Shi TT, Li JC, Yang JY, Liu HB, Mao GZ, Qiao Z, Yang YK, J. Clean Prod., 172, 2435 (2017)
- Wei W, Sun MY, Zhang L, Zhao SF, Wu JD, Wang JP, Sep. Purif. Technol., 189, 32 (2017)
- Xiao H, Zhao T, Li CH, Li MY, J. Clean Prod., 165, 1499 (2017)
- Xiao SH, Lv XM, Zeng YF, Jin T, Luo L, Zhang BB, Zhang G, Wang YH, Feng L, Zhu Y, Tang F, Chemosphere, 185, 647 (2017)
- Hui C, Guo XX, Sun PF, Khan RA, Zhang QC, Liang YC, Zhao YH, Bioresour. Technol., 248, 148 (2018)
- Yang XF, Cui Y, Li YX, Zheng LY, Xie LJ, Ning R, Liu Z, Lu JL, Zhang GG, Liu CX, Zhang GY, Spectrochim. Acta A, 137, 1055 (2015)
- Zhang HC, Sun CB, Han WJ, Zhang JX, Hou JC, Meat Sci., 136, 30 (2018)
- Zhang J, Zhu L, Shi ZY, Gao Y, Chemosphere, 186, 576 (2017)
- Kumar A, Triquigneaux M, Madenspache J, Ranguelova K, Bang JJ, Fessler MB, Mason RP, Redox Biol., 15, 327 (2018)
- Liu JQ, Cheng X, Zhang YL, Wang XZ, Zou QS, Fu LJ, Microporous Mesoporous Mater., 252, 179 (2017)
- Kim HS, Hur SJ, Food Chem., 239, 556 (2018)
- Fojt L, Strasak L, Vetterl V, Bioelectrochemistry, 70, 91 (2007)
- Tugaoen HO, Herckes P, Hristovski K, Westerhoff P, Appl. Catal. B: Environ., 220, 597 (2018)
- Alinat E, Delaunay N, Archer X, Mallet JM, Gareil P, J. Hazard. Mater., 286, 92 (2015)
- Azami M, Haghighi M, Allahyari S, Ultrason. Sonochem., 40, 505 (2018)
- Martins MA, de Lima BD, Ferreira LP, Colonetti E, Feltrin J, De Noni A, Appl. Surf. Sci., 404, 18 (2017)
- Thakur M, Sharma G, Ahamad T, Ghfar A, Pathania D, Naushad M, Colloids Surf. B: Biointerfaces, 157, 456 (2017)
- Adamu H, McCue AJ, Taylor RSF, Manyar HG, Anderson JA, Appl. Catal. B: Environ., 217, 181 (2017)
- Wang Y, Li B, Li G, Huang Y, Fang D, Wang J, Song Y, J. Ind. Eng. Chem., 47, 74 (2017)
- Chu KH, Y LQ, Wang W, Wu D, Chan DKL, Zeng CP, Yip HY, Yu JC, Wong PK, Chemosphere, 183, 219 (2017)
- Milis A, Peral J, Domenech X, Oxid. Commun., 17, 163 (1994)
- Hunge YM, Mahadik MA, Moholkar AV, Bhosale CH, Appl. Surf. Sci., 420, 764 (2017)
- Li YL, Bian YY, Qin HX, Zhang YX, Bian ZF, Appl. Catal. B: Environ., 206, 293 (2017)
- Xu LH, Zhou Y, Wu ZJ, Zheng GG, He JJ, Zhou YJ, J. Phys. Chem. Solids, 106, 29 (2017)
- Cai T, Liu YT, Wang LL, Zhang SQ, Zeng YX, Yuan JL, Ma JH, Dong WY, Liu CB, Luo SL, Appl. Catal. B: Environ., 208, 1 (2017)
- Zhang LL, Feng WH, Wang B, Wang KQ, Gao F, Zhao Y, Liu P, Appl. Catal. B: Environ., 212, 80 (2017)
- Ye Y, Zang ZG, Zhou TW, Dong F, Lu SR, Tang XS, Wei W, Zhang YB, J. Catal., 357, 100 (2018)
- Huang HJ, Zhang J, Jiang L, Zang ZG, J. Alloy. Compd., 718, 112 (2017)
- Wen MQ, Xiong T, Zang ZG, Wei W, Tang XT, Dong F, J. Opt. Soc. Am. A, 24, 10205 (2016)
- Lv XJ, Zhou SX, Huang X, Wang CJ, Fu WF, Appl. Catal. B: Environ., 182, 220 (2016)
- Hu CH, Zhuang J, Zhong LS, Zhong Y, Wang DH, Zhou HY, Appl. Surf. Sci., 426, 1173 (2017)
- Wang GW, Li SY, Ma X, Qiao J, Li GS, Zhang HB, Wang J, Song YT, Ultrason. Sonochem., 45, 150 (2018)
- Wang GW, Ma X, Wei SN, Li SY, Qiao J, Wang J, Song YT, J. Power Sources, 373, 161 (2018)
- Cho KH, Sung YM, Nano Energy, 36, 176 (2017)
- Sun MX, Wang Y, Fang YL, Sun SF, Yu ZS, J. Alloy. Compd., 684, 335 (2016)
- Zhu L, Jo SB, Ye S, Ullah K, Meng ZD, Oh WC, J. Ind. Eng. Chem., 22, 264 (2015)
- Rajamanickam D, Dhatshanamurthi P, Shanthi M, Mater. Res. Bull., 61, 439 (2015)
- Zhou Y, Wei SN, Li SY, Liu XD, Shu XQ, Zhang X, Zhao C, Qu ZP, Fang DW, Zhang ZH, Wang J, Int. J. Hydrog. Energy, 42(26), 16362 (2017)
- Wang GW, Huang YY, Li GS, Zhang HS, Wang YD, Li BW, Wang J, Song YT, Ultrason. Sonochem., 38, 335 (2017)
- Zhao XJ, Yu JJ, Cui HD, Wang TH, J. Photochem. Photobiol. A-Chem., 335, 130 (2017)
- Torki F, Faghihian H, J. Photochem. Photobiol. A-Chem., 338, 49 (2017)
- Hu JD, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM, Appl. Catal. B: Environ., 217, 224 (2017)
- Meng ZD, Ullah K, Zhu L, Ye S, Oh WC, Mater. Sci. Semicond. Process, 27, 173 (2014)
- Guo YW, Li Y, Li SG, Zhang L, Li Y, Wang J, Energy, 82, 72 (2015)
- Xue H, Li ZH, Ding ZX, Wu L, Wang XX, Fu XZ, Cryst. Growth Des., 8, 4511 (2008)
- Tian QF, Zhuang JD, Wang JX, Xie LY, Liu P, Appl. Catal. A: Gen., 425-426, 74 (2012)
- Cui Y, Zhou CW, Li XZ, Gao Y, Zhang J, Electrochim. Acta, 228, 428 (2017)
- Liu H, Jin ZT, Su Y, Wang Y, Sep. Purif. Technol., 142, 25 (2015)
- Derikvandi H, Nezamzadeh-Ejhieh A, J. Colloid Interface Sci., 490, 652 (2017)
- Mathur BS, Barth S, Shen H, Chem. Vap. Deposition, 1, 11 (2005)
- Lee JH, Kim SI, Park SM, Kang M, Ceram. Int., 43, 1768 (2017)
- Zhao XJ, Lv X, Cui HD, Wang TH, J. Colloid Interface Sci., 507, 260 (2017)
- Zeng XJ, Yang B, Li XP, Yu RH, Electrochim. Acta, 240, 341 (2017)
- Wan J, Du X, Liu EZ, Hu Y, Fan J, Hu XY, J. Catal., 345, 281 (2017)
- Raja VR, Rosaline DR, Suganthi A, Rajarajan M, Solid State Sci., 67, 99 (2017)