Journal of Industrial and Engineering Chemistry, Vol.66, 411-418, October, 2018
Continuous synthesis of silver plates in a continuous stirring tank reactor (CSTR)
E-mail:,
In this report, a continuous stirring tank reactor (CSTR) and batch reactor were used for synthesis of silver (Ag) plates. The influences of agitation speed, molar ratio of AgNO3 to NaCl, and concentration of reagent were investigated. Size analysis demonstrated that the size of Ag plates synthesized by the CSTR was larger than the size of plates synthesized by the batch reactor. The reason might be that low concentration of reagent and continuous supply of monomer in CSTR are more favorable for growth of anisotropic structures. CSTR demonstrates good advantages for mass synthesis of Ag plates of large size.
- Wu Z, Yang Y, Wu W, Nanoscale, 8, 1237 (2016)
- Wang DS, Xie T, Li YD, Nano Res., 2, 30 (2009)
- Abeyweera SC, Sun Y, Mater. Chem. Front., 1, 1534 (2017)
- Bai Y, Huang H, Wang C, Long R, Xiong Y, Mater. Chem. Front., 1, 1951 (2017)
- Darr JA, Zhang JY, Makwana NM, Weng XL, Chem. Rev., 117(17), 11125 (2017)
- Saldanha PL, Lesnyak V, Manna L, Nano Today, 12, 46 (2017)
- Tang ZM, Im SH, Kim WS, Yu T, J. Cryst. Growth, 469, 172 (2017)
- Altansukh B, Yao J, Wang D, J. Nanosci. Nanotechnol., 9, 1300 (2009)
- Tang Z, Kwon H, Yi M, Kim K, Han JW, Kim WS, Yu T, Chemistryselect, 17, 4655 (2017)
- Shahzad A, Chung M, Yu T, J. Chem. Asian, 10, 2515 (2015)
- Yu T, Wu Z, Kim WS, RSC Adv., 4, 37516 (2014)
- Bullen C, Latter MJ, Alonzo NJD, Willis GJ, Raston CL, Chem. Commun., 47, 4123 (2011)
- Zhang Q, Hu Y, Guo S, Goebl J, Yin Y, Nano Lett., 10, 5037 (2010)
- Letcher T, Scott J, Patterson D, Chemical Processes for a Sustainable Future, Royal Society of Chemistry, 2014.
- Jana NR, Small, 1, 875 (2005)
- Lin XZ, Terepka AD, Yang H, Nano Lett., 4, 2227 (2004)
- Wiles C, Watts P, Green Chem., 14, 38 (2012)
- Kumar S, Ganesan S, Comput. Chem. Eng., 96, 128 (2017)
- Hung LH, Lee AP, J. Med. Biol. Eng., 27, 1 (2007)
- Uson L, Sebastian V, Arruebo M, Santamaria J, J. Chem. Eng., 285, 286 (2016)
- Xia M, Tang Z, Kim WS, Yu T, Park BJ, J. Cryst. Growth, 469, 31 (2017)
- Cottam BF, Krishnadasan S, deMello AJ, deMello JC, Shaffer MSP, Lab Chip, 7, 167 (2007)
- Takagi M, Maki T, Miyahara M, Mae K, J. Chem. Eng., 101, 269 (2004)
- Nakamura H, Yamaguchi Y, Miyazaki M, Maeda H, Uehara M, Mulvaney P, Chem. Commun., 23, 2844 (2002)
- Kumar V, Fuster HA, Oh N, Zhai Y, Deshpande K, Shim M, Kenis PJA, ChemNanoMat, 3, 204 (2017)
- Wang Y, Zhang X, Wang A, Li X, Wang G, Zhao L, J. Chem. Eng., 235, 191 (2014)
- Cambie D, Bottecchia C, Straathof NJW, Hessel V, Noel T, Chem. Rev., 116(17), 10276 (2016)
- Wagner J, Kohler JM, Nano Lett., 5, 685 (2005)
- Boleininger J, Kurz A, Reuss V, Sonnichsen C, Phys. Chem. Chem. Phys., 8, 3824 (2006)
- Knauer A, Csaki A, Fritzsche W, Serra CA, Leclerc N, Kohler JM, J. Chem. Eng., 227, 191 (2013)
- Carboni M, Capretto L, Carugo D, Stulz E, Zhang X, J. Mater. Chem. C, 1, 7540 (2013)
- Knauer A, Csaki C, Moller W, Huhn W, Frizsche JM, J. Phys. Chem. C, 116, 9251 (2012)
- Duraiswamy S, Khan SA, Part. Part. Syst. Charact., 31(4), 429 (2014)
- Tai CY, Wang YH, Liu HS, AIChE J., 54(2), 445 (2008)
- Hartlieb KJ, Raston CL, Chem. Mater., 19, 5453 (2007)
- Chin SF, Iyer KS, Raston CL, Saunders M, Adv. Funct. Mater., 18(6), 922 (2008)
- Haseidl F, Jacobsen NC, Hinrichsen O, Chem. Ing. Tech., 85(4), 540 (2013)
- Azbar N, Ursillo P, Speece RE, Water Res., 35, 817 (2001)
- Fogler HS, Elements of Chemical Reaction Engineering, Fourth ed., Pearson Educational International Inc, Pearson, 2006.
- Xia YN, Xiong YJ, Lim BK, Sara ES, Angew. Chem.-Int. Edit., 48, 60 (2009)
- Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupeld F, Adv. Colloid Interface Sci., 170, 2 (2012)
- Tang Z, Shahzad A, Kim WS, Yu T, RSC Adv., 5, 83880 (2015)
- Lohse SE, Burrows ND, Scarabelli L, Liz-Marza’n LM, Murphy CJ, Chem. Mater., 26, 34 (2013)
- Alexandridis P, Chem. Eng. Technol., 34(1), 15 (2011)
- Liu PX, Qin RX, Fu G, Zheng NF, J. Am. Chem. Soc., 139(6), 2122 (2017)
- Zhang Y, Guo J, Xu D, Sun Y, Yan F, ACS Appl. Mater. Interfaces, 9, 25465 (2017)
- Korte KE, Skrabalak SE, Xia Y, J. Mater. Chem., 18, 437 (2008)
- Guo JZ, Cui H, Zhou W, Wang W, J. Photochem. Photobiol. A-Chem., 193, 89 (2008)
- Diao P, Wang JY, Zhang DF, Xiang M, Zhang Q, J. Electroanal. Chem., 630(1-2), 81 (2009)
- Oxford SM, Henao JD, Yang JH, Kung MC, Kung HH, Appl. Catal. A: Gen., 339(2), 180 (2008)
- Shahzad A, Chung J, Lee TJ, Kim YH, Bhang SH, Kim WS, Yu T, ChemistrySelect, 3, 1801 (2018)
- Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
- Liu J, Rasmuson AC, Cryst. Growth Des., 13, 4385 (2013)
- Peng ZA, Peng XG, J. Am. Chem. Soc., 123(7), 1389 (2001)
- Jeanmaire DL, Van Duyne RP, J. Electroanal. Chem., 84, 1 (1977)
- Zhu Z, Meng H, Liu W, Liu X, Gong J, Qiu X, Tang Z, Angew. Chem., 123, 1631 (2011)
- Olea-Mejia O, Fernandez-Mondragon M, Rodriguez-de la Concha G, Camacho-Lopez M, Appl. Surf. Sci., 1, 66 (2015)