화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.10, 942-949, October, 2018
Self-Assembly of Pentacene on Sub-nm Scale Surface Roughness-Controlled Gate Dielectrics
E-mail:,
Surface roughness (Rq) of dielectric materials plays an important role in the ordering and charge-carrier transport of organic semiconductors, and is directly involved in the development of nuclei and crystal grains on a surface. To investigate the effect of Rq-controlled dielectrics with similar surface energy (γ) on the development of nuclei and crystal grain, a series of triethoxysilane-terminated polystyrene (PSTES) polymers with different molecular weights (MW) values is synthesized using reversible addition-fragmentation chain transfer polymerization. The different MW PS-TES films are spun-cast on a hydroxyl (-OH)-rich SiO2 dielectric surface, and chemically coupled with -OH moieties at 110 °C. Some films are also rinsed with an excess of toluene to remove unreacted polymer residue, increasing the average Rq values of the treated SiO2 surfaces. The resulting polymer-treated dielectrics show similar surface energy values of 41.6-42.5 mJ m-2 but different Rq values ranging from 0.29 to 1.07 nm. On the nanoscale roughness-controlled dielectric surfaces, 40-nm-thick pentacene films show discernible types of crystal grains with different phases, shapes, sizes, and ordering, all of which significantly affect charge-carrier transport along π-conjugated semiconductors in organic field-effect transistors (OFETs). Pentacene OFETs show large variations in field-effect mobility (μFET) from 0.89 to 0.19 cm2 V-1 s-1. Specifically, at Rq=0.40 nm the μFET value suddenly decreases to 0.30 cm2 V-1 s-1. On polymer treated SiO2 dielectrics with an Rq value greater than 0.40 nm, polymorphic, less-ordered, and smaller grains of pentacene containing large number of charge trap sites developed, resulting in significantly degraded charge-carrier transport along the intra- and inter-grains in OFETs, in comparison to the well-ordered grains on smooth polymer-treated surfaces (Rq<0.40 nm).
  1. Zaumseil J, Sirringhaus H, Chem. Rev., 107(4), 1296 (2007)
  2. Aimi J, Wang PH, Shih CC, Huang CF, Nakanishi T, Takeuchi M, Hsueh HY, Chen WC, J. Mater. Chem. C, 6, 2724 (2018)
  3. Qiu L, Lim JA, Wang X, Lee WH, Hwang M, Cho K, Adv. Mater., 20(6), 1141 (2008)
  4. Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F, Nat. Mater., 7(5), 412 (2008)
  5. Dimitrakopoulos CD, Malenfant PRL, Adv. Mater., 14(2), 99 (2002)
  6. Anthony JE, Chem. Rev., 106(12), 5028 (2006)
  7. Anthony JE, Angew. Chem.-Int. Edit., 47, 452 (2008)
  8. Kitamura M, Arakawa Y, J. Phys. Condens. Matter, 20, 184011 (2008)
  9. Lang P, Mottaghi D, Lacaze PC, Appl. Surf. Sci., 365, 364 (2016)
  10. Zhang H, Guo X, Hui J, Hu S, Zhu D, Nano Lett., 11, 4939 (2011)
  11. Viani L, Risko C, Toney MF, Breiby DW, Bredas JL, ACS Nano, 8, 690 (2014)
  12. Ortiz RP, Facchetti A, Marks TJ, Chem. Rev., 110(1), 205 (2010)
  13. Acton O, Ting GG, Shamberger PJ, Ohuchi FS, Ma H, Jen AKY, ACS Appl. Mater. Interfaces, 2, 511 (2010)
  14. Kim SH, Jang M, Yang H, Anthony JE, Park CE, Adv. Funct. Mater., 21(12), 2198 (2011)
  15. Lee S, Jang M, Yang H, ACS Appl. Mater. Interfaces, 6, 20444 (2014)
  16. Jang M, Yu YC, Jeon H, Youk JH, Yang H, ACS Appl. Mater. Interfaces, 7, 5274 (2015)
  17. Hutchins DO, Weidner T, Baio J, Polishak B, Acton O, Cernetic N, Ma H, Jen AKY, J. Mater. Chem. C, 1, 101 (2013)
  18. Kang W, An G, Kim MJ, Lee WH, Lee DY, Kim H, Cho J, J. Phys. Chem. C, 120, 3501 (2016)
  19. Jang M, Lee M, Shin H, Ahn J, Pei M, Youk JH, Yang H, Adv. Mater. Interfaces, 201670068 (2016).
  20. Kim K, Hahm SG, Kim Y, Kim S, Kim SH, Park CE, Org. Electron., 21, 111 (2015)
  21. Pei M, Lee AS, Hwang SS, Yang H, J. Mater. Chem. C, 5, 10955 (2017)
  22. Fritz SE, Kelley TW, Frisbie CD, J. Phys. Chem. B, 109(21), 10574 (2005)
  23. Zan HW, Chou CW, Jpn. J. Appl. Phys., 48, 031501 (2009)
  24. Shin K, Yang C, Yang SY, Jeon H, Park CE, Appl. Phys. Lett., 88, 072109 (2006)
  25. Min HG, Seo E, Lee J, Park N, Lee HS, Synth. Met., 163, 7 (2013)
  26. Lin G, Wang Q, Peng L, Wang M, Lu H, Zhang G, Lv G, Qiu L, J. Phys. D-Appl. Phys., 48, 105103 (2015)
  27. Yang D, Zhang L, Yang SY, Zou BS, IEEE Photonics J., 5, 680170 (2013)
  28. Ruiz R, Choudhary D, Nickel B, Toccoli T, Chang KC, Mayer AC, Clancy P, Blakely JM, Headrick RL, Iannotta S, Malliaras GG, Chem. Mater., 16, 4497 (2004)
  29. Sthtein M, Mapel J, Benziger JB, Forrest SR, Appl. Phys. Lett., 81, 268 (2002)
  30. Muller EM, Marohn JA, Adv. Mater., 17(11), 1410 (2005)
  31. Yang HC, Shin TJ, Ling MM, Cho K, Ryu CY, Bao ZN, J. Am. Chem. Soc., 127(33), 11542 (2005)
  32. Park SH, Lee HS, Kim JD, Breiby DW, Kim E, Park YD, Ryu DY, Lee DR, Cho JH, J. Mater. Chem., 21, 15580 (2011)
  33. Jang M, Park JH, Im S, Kim SH, Yang H, Adv. Mater., 26(2), 288 (2014)
  34. Chong YK, Moad G, Rizzardo E, Thang SH, Macromolecules, 40(13), 4446 (2007)
  35. Yang HC, Kim SH, Yang L, Yang SY, Park CE, Adv. Mater., 19(19), 2868 (2007)
  36. Pei M, Huang J, Jang M, Kim JH, Lee M, Chen J, Hwang DH, Yang H, J. Phys. Chem. C, 120, 903 (2016)
  37. Lee WH, Choi HH, Kim DH, Cho K, Adv. Mater., 26(11), 1660 (2014)