Macromolecular Research, Vol.26, No.10, 942-949, October, 2018
Self-Assembly of Pentacene on Sub-nm Scale Surface Roughness-Controlled Gate Dielectrics
E-mail:,
Surface roughness (Rq) of dielectric materials plays an important role in the ordering and charge-carrier transport of organic semiconductors, and is directly involved in the development of nuclei and crystal grains on a surface. To investigate the effect of Rq-controlled dielectrics with similar surface energy (γ) on the development of nuclei and crystal grain, a series of triethoxysilane-terminated polystyrene (PSTES) polymers with different molecular weights (MW) values is synthesized using reversible addition-fragmentation chain transfer polymerization. The different MW PS-TES films are spun-cast on a hydroxyl (-OH)-rich SiO2 dielectric surface, and chemically coupled with -OH moieties at 110 °C. Some films are also rinsed with an excess of toluene to remove unreacted polymer residue, increasing the average Rq values of the treated SiO2 surfaces. The resulting polymer-treated dielectrics show similar surface energy values of 41.6-42.5 mJ m-2 but different Rq values ranging from 0.29 to 1.07 nm. On the nanoscale roughness-controlled dielectric surfaces, 40-nm-thick pentacene films show discernible types of crystal grains with different phases, shapes, sizes, and ordering, all of which significantly affect charge-carrier transport along π-conjugated semiconductors in organic field-effect transistors (OFETs). Pentacene OFETs show large variations in field-effect mobility (μFET) from 0.89 to 0.19 cm2 V-1 s-1. Specifically, at Rq=0.40 nm the μFET value suddenly decreases to 0.30 cm2 V-1 s-1. On polymer treated SiO2 dielectrics with an Rq value greater than 0.40 nm, polymorphic, less-ordered, and smaller grains of pentacene containing large number of charge trap sites developed, resulting in significantly degraded charge-carrier transport along the intra- and inter-grains in OFETs, in comparison to the well-ordered grains on smooth polymer-treated surfaces (Rq<0.40 nm).
Keywords:organic semiconductor;dielectric surface roughness;polymer grafting;organic field-effect transistor;organic thin film transistor
- Zaumseil J, Sirringhaus H, Chem. Rev., 107(4), 1296 (2007)
- Aimi J, Wang PH, Shih CC, Huang CF, Nakanishi T, Takeuchi M, Hsueh HY, Chen WC, J. Mater. Chem. C, 6, 2724 (2018)
- Qiu L, Lim JA, Wang X, Lee WH, Hwang M, Cho K, Adv. Mater., 20(6), 1141 (2008)
- Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F, Nat. Mater., 7(5), 412 (2008)
- Dimitrakopoulos CD, Malenfant PRL, Adv. Mater., 14(2), 99 (2002)
- Anthony JE, Chem. Rev., 106(12), 5028 (2006)
- Anthony JE, Angew. Chem.-Int. Edit., 47, 452 (2008)
- Kitamura M, Arakawa Y, J. Phys. Condens. Matter, 20, 184011 (2008)
- Lang P, Mottaghi D, Lacaze PC, Appl. Surf. Sci., 365, 364 (2016)
- Zhang H, Guo X, Hui J, Hu S, Zhu D, Nano Lett., 11, 4939 (2011)
- Viani L, Risko C, Toney MF, Breiby DW, Bredas JL, ACS Nano, 8, 690 (2014)
- Ortiz RP, Facchetti A, Marks TJ, Chem. Rev., 110(1), 205 (2010)
- Acton O, Ting GG, Shamberger PJ, Ohuchi FS, Ma H, Jen AKY, ACS Appl. Mater. Interfaces, 2, 511 (2010)
- Kim SH, Jang M, Yang H, Anthony JE, Park CE, Adv. Funct. Mater., 21(12), 2198 (2011)
- Lee S, Jang M, Yang H, ACS Appl. Mater. Interfaces, 6, 20444 (2014)
- Jang M, Yu YC, Jeon H, Youk JH, Yang H, ACS Appl. Mater. Interfaces, 7, 5274 (2015)
- Hutchins DO, Weidner T, Baio J, Polishak B, Acton O, Cernetic N, Ma H, Jen AKY, J. Mater. Chem. C, 1, 101 (2013)
- Kang W, An G, Kim MJ, Lee WH, Lee DY, Kim H, Cho J, J. Phys. Chem. C, 120, 3501 (2016)
- Jang M, Lee M, Shin H, Ahn J, Pei M, Youk JH, Yang H, Adv. Mater. Interfaces, 201670068 (2016).
- Kim K, Hahm SG, Kim Y, Kim S, Kim SH, Park CE, Org. Electron., 21, 111 (2015)
- Pei M, Lee AS, Hwang SS, Yang H, J. Mater. Chem. C, 5, 10955 (2017)
- Fritz SE, Kelley TW, Frisbie CD, J. Phys. Chem. B, 109(21), 10574 (2005)
- Zan HW, Chou CW, Jpn. J. Appl. Phys., 48, 031501 (2009)
- Shin K, Yang C, Yang SY, Jeon H, Park CE, Appl. Phys. Lett., 88, 072109 (2006)
- Min HG, Seo E, Lee J, Park N, Lee HS, Synth. Met., 163, 7 (2013)
- Lin G, Wang Q, Peng L, Wang M, Lu H, Zhang G, Lv G, Qiu L, J. Phys. D-Appl. Phys., 48, 105103 (2015)
- Yang D, Zhang L, Yang SY, Zou BS, IEEE Photonics J., 5, 680170 (2013)
- Ruiz R, Choudhary D, Nickel B, Toccoli T, Chang KC, Mayer AC, Clancy P, Blakely JM, Headrick RL, Iannotta S, Malliaras GG, Chem. Mater., 16, 4497 (2004)
- Sthtein M, Mapel J, Benziger JB, Forrest SR, Appl. Phys. Lett., 81, 268 (2002)
- Muller EM, Marohn JA, Adv. Mater., 17(11), 1410 (2005)
- Yang HC, Shin TJ, Ling MM, Cho K, Ryu CY, Bao ZN, J. Am. Chem. Soc., 127(33), 11542 (2005)
- Park SH, Lee HS, Kim JD, Breiby DW, Kim E, Park YD, Ryu DY, Lee DR, Cho JH, J. Mater. Chem., 21, 15580 (2011)
- Jang M, Park JH, Im S, Kim SH, Yang H, Adv. Mater., 26(2), 288 (2014)
- Chong YK, Moad G, Rizzardo E, Thang SH, Macromolecules, 40(13), 4446 (2007)
- Yang HC, Kim SH, Yang L, Yang SY, Park CE, Adv. Mater., 19(19), 2868 (2007)
- Pei M, Huang J, Jang M, Kim JH, Lee M, Chen J, Hwang DH, Yang H, J. Phys. Chem. C, 120, 903 (2016)
- Lee WH, Choi HH, Kim DH, Cho K, Adv. Mater., 26(11), 1660 (2014)