Journal of Industrial and Engineering Chemistry, Vol.67, 140-147, November, 2018
Effects of a naturally derived surfactant on hydrate anti-agglomeration using micromechanical force measurement
E-mail:
The performance of a hydrate anti-agglomerant (AA) on cyclopentane (CyC5) hydrate anti-agglomeration at various concentrations (0.1 wt%, based on the oil phase) using MMF apparatus has been investigated. At low AA concentrations up to 0.01 wt%, the AA reduces the cohesion force (capillary force) by reducing the CyC5-water interfacial tension. At concentrations higher than 0.1 wt%, hydrate hydrophobicity alternation and AA’s thermodynamic inhibition effects are the main part of AA’s mechanism. Additionally, a “temporary agglomeration” phenomenon caused by surface melting of the hydrate particles is also observed, which may indicate the AA’s weak ability to produce stable water-CyC5 interface.
Keywords:Cocamidopropyl dimethylamine;Gas hydrates;Anti-agglomeration;Hydrate-water droplet-hydrate interaction
- Kelland MA, Energy Fuels, 20(3), 825 (2006)
- Sun MW, Firoozabadi A, Fuel, 146, 1 (2015)
- Aman ZM, Brown EP, Sloan ED, Sum AK, Koh CA, Phys. Chem. Chem. Phys., 13, 19796 (2011)
- Kelland MA, Production Chemicals for Oil and Gas Industry, CRC Press, Taylor & Francis, Boca Raton, FL, 2014.
- Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, CRC Press, Taylor & Francis, Boca Raton, FL, 2008.
- Perrin A, Musa OM, Steed JW, Chem. Soc. Rev., 42, 1996 (2013)
- Abojaladi N, Kelland MA, Chem. Eng. Sci., 152, 746 (2016)
- Gao SQ, Energy Fuels, 23, 2118 (2009)
- York JD, Firoozabadi A, Energy Fuels, 23, 2937 (2009)
- Sun MW, Firoozabadi A, Energy Fuels, 28(3), 1890 (2014)
- Sun MW, Firoozabadi A, Chen GJ, Sun CY, Energy Fuels, 29(5), 2901 (2015)
- Sun MW, Wang Y, Firoozabadi A, Energy Fuels, 26(9), 5626 (2012)
- Chua PC, Kelland MA, Energy Fuels, 26(2), 1160 (2012)
- Chua PC, Kelland MA, Energy Fuels, 27, 1285 (2013)
- Norland AK, Kelland MA, Chem. Eng. Sci., 69(1), 483 (2012)
- Mady ME, Kelland MA, Chem. Eng. Sci., 144, 275 (2016)
- Liu C, Li M, Zhang G, Koh CA, Phys. Chem. Chem. Phys., 17, 20021 (2015)
- Brown EP, Koh CA, Phys. Chem. Chem. Phys., 18, 594 (2016)
- Smith JD, Meuler AJ, Bralower HL, Venkatesan R, Subramanian S, Majid A, Sloan ED, Koh CA, Sum AK, Energy Fuels, 27, 4546 (2013)
- Karanjkar PU, Lee JW, Morris JF, Cryst. Growth Des., 12, 3817 (2012)
- Sun MW, Firoozabadi A, J. Colloid Interface Sci., 402, 312 (2013)
- Emsley J, Chem. Soc. Rev., 9, 91 (1980)
- Zhao HJ, Sun MW, Firoozabadi A, Fuel, 180, 187 (2016)
- Dong SB, Li MZ, Firoozabadi A, Fuel, 210, 713 (2017)
- Dong SB, Firoozabadi A, J. Chem. Thermodyn., 117, 214 (2018)
- Lv YN, Jia ML, Chen J, Sun CY, Gong J, Chen GJ, Liu B, Ren N, Guo SD, Li QP, Energy Fuels, 29(9), 5563 (2015)
- Brown EP, PhD Thesis, School of Mines, Colorado, 2016.
- Aman ZM, Sloan ED, Sum AK, Koh CA, Energy Fuels, 26(8), 5102 (2012)
- Degado-Linares JG, Majid AAA, Sloan ED, Koh CA, Sum AK, Energy Fuels, 27(8), 4564 (2013)
- Dieker LE, Thesis MS, School of Mines, Colorado, 2009.
- Dieker LE, Aman ZM, George NC, Sum AK, Sloan ED, Koh CA, Energy Fuels, 23, 5966 (2009)
- Aman ZM, Dieker LE, Aspenses G, Sum AK, Sloan ED, Koh CA, Energy Fuels, 24, 5441 (2010)
- Aman ZM, Joshi SE, Sloan ED, Sum AK, Koh CA, J. Colloid Interface Sci., 376, 283 (2012)
- Aman ZM, Olcott K, Pfeiffer K, Sloan ED, Sum AK, Koh CA, Langmuir, 29(8), 2676 (2013)
- Wu RB, Aman ZM, May EF, Kozielski KA, Hartley PG, Maeda N, Sum AK, Energy Fuels, 28(6), 3632 (2014)
- Liu CW, Li MZ, Chen LT, Li YX, Zheng SX, Han GM, Energy Fuels, 31(5), 4981 (2017)
- Wang LX, Sharp D, Masliyah J, Xu ZH, Langmuir, 29(11), 3594 (2013)
- Nagappayya SK, Lucente-Schultz RM, Nace VM, Ho VM, J. Chem. Eng. Data, 60(2), 351 (2015)