화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.6, 1014-1019, November, 2018
흡착전압과 코팅된 이온교환막 두께가 막 결합형 축전식 탈염공정에서 흡착성능에 미치는 영향
Effects of Adsorption Voltages and Thickness of Coated Ion Exchange Membrane Layer on Adsorption Performance in Membrane Capacitive Deionization Process
E-mail:
초록
탄소 전극 위에 코팅된 이온교환막 층의 두께가 막 결합형 축전식 탈염 공정에서 흡착성능에 어떠한 영향을 끼치는지 최대흡착에 걸리는 시간과 탈착 시 배출수 농도에 관하여 연구하였다. 이온교환막의 두께는 8 wt% 이온교환고분자 용액의 코팅횟수를 1, 2, 3회로 달리하였을 때, 이온교환막의 두께가 증가됨에 따라 막을 통과하는 이온들의 움직임이 원활하지 않아 탄소전극에 충분히 흡착되지 못하여 배출수 농도의 최소점이 높아졌다. 최대 흡착 시까지 걸리는 시간이 1회 코팅에서 80분, 그리고 2, 3회 코팅에서 각각 174분, 242분으로 증가되었다. 코팅 두께에 따른 최대 흡착 시까지 걸리는 시간이 선형으로 나타났다.
The effects of the thickness of the ion exchange layers on carbon electrodes have been studied on the adsorption performance through the operating time to the maximum adsorption and effluent concentrations at the desorption in the membrane capacitive deionized processes. The thicknesses of the ion exchange layers were adjusted with the number of times from 1, 2, and 3 times using 8 wt% of ion exchange polymer solutions. As the thickness of the ion exchange layers on carbon electrodes increased, the minimum concentrations of the effluents increased since the adsorption was not satisfactorily carried out due to the limited movements of ions in feed within the coating layers. The times to the maximum adsorptions were 80 min for one time coating and 174 and 242 min for two, three times coatings, respectively. It was interesting that the linear relationship was found between the thickness of the coating layers and the times to the maximum adsorption.
  1. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845 (2010)
  2. Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327 (2005)
  3. Kim YJ, Choi JH, Appl. Chem. Eng., 23(5), 474 (2012)
  4. Welgemoed TJ, Schutte CF, Desalination, 183, 1 (2005)
  5. Kang KW, Hwang TS, Membr. J., 25, 406 (2015)
  6. Ryu JH, Kim TJ, Lee TY, Lee IB, J. Taiwan Inst. Chem. E., 41, 506 (2010)
  7. Kim YJ, Choi JH, Water Res., 44, 990 (2010)
  8. Lee JW, Kim HI, Kim HJ, Shin HS, Kim JS, Jeong BI, Park SG, J. Korean Electrochem. Soc., 12, 287 (2009)
  9. Lee JB, Park KK, Eum HM, Lee CW, Desalination, 196(1-3), 125 (2006)
  10. Kim YJ, Choi JH, Water. Res., 44, 990 (2010)
  11. Li HB, Zou L, Desalination, 275(1-3), 62 (2011)
  12. Nadakatti S, Tendulkar M, Kadam M, Desalination, 268(1-3), 182 (2011)
  13. Porada S, Weinstein L, Dash R, Van Der Wal A, Bryjak M, Gogotsi Y, Biesheuvel P, ACS Appl. Mater. Interfaces, 4, 1194 (2012)
  14. Lim JA, Park NS, Park JS, Choi JH, Desalination, 238(1-3), 37 (2009)
  15. Zhao R, Satpradit O, Rijnaarts HHM, Biesheuvel PM, van der Wal A, Water Res., 47, 1941 (2013)
  16. Kang N, Shin J, Hwang TS, Lee YS, React. Funct. Polym., 99, 42 (2016)
  17. Kang HG, Lee MS, Sim WJ, Yang TH, Shin KH, Shul YG, Choi YW, J. Membr. Sci., 460, 178 (2014)
  18. Sohn JY, Park BH, Song JM, Lee YM, Shin J, Polym. Korea, 37(5), 649 (2013)
  19. Yamaguchi T, Miyata F, Nakao S, J. Membr. Sci., 214(2), 283 (2003)
  20. Son TY, Yun JS, Han SI, Nam SY, Membr. J., 27, 399 (2017)
  21. Son TY, Kim JH, Park CH, Nam SY, Membr. J., 27, 336 (2017)
  22. Xu TW, J. Membr. Sci., 263(1-2), 1 (2005)
  23. Qiu Q, Ch JH, Choi YW, Choi JH, Shin JW, Lee YS, Desalination, 417, 87 (2017)
  24. Gao X, Omosebi A, Landon J, Liu K, J. Electrochem. Soc., 161, 159 (2014)
  25. Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison JS, Keesman KJ, Kaskel S, Biesheuvel PM, Presser V, Energy Environ. Sci., 6, 3700 (2013)
  26. Bayram E, Ayranci E, Electrochim. Acta, 56(5), 2184 (2011)
  27. Cohen I, Avraham E, Bouhadana Y, Soffer A, Aurbach D, Electrochim. Acta, 153, 106 (2015)
  28. Wouters JJ, Lado JJ, Tejedor-Tejedor MI, Perez-Roa R, Anderson MA, Electrochim. Acta, 112, 763 (2013)
  29. Omosebi A, Gao X, Landon J, Liu K, ACS Appl. Mat. Interfac., 6, 12640 (2014)
  30. Lagana F, Barbieri G, Drioli E, J. Membr. Sci., 166(1), 1 (2000)
  31. Eykens L, Hitsov I, De Sitter K, Dotremont C, Pinoy L, Nopens I, Van der Bruggen B, J. Membr. Sci., 498, 353 (2016)