화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.4, 273-292, November, 2018
Effects of viscous dissipation on heat convection of viscoelastic flow lastic flow
E-mail:
In the present paper, analytical solutions for thermal convection of the Finitely Extensible Nonlinear Elastic model with Peterlin’s closure (FENE-P) in isothermal slits and tubes are presented by considering the viscous dissipation effects for the first time. Temperature distributions are derived in closed form, namely the HeunT function, and Frobenius series solutions for the slit and the tube flows, respectively. The effects of fluid elasticity, the Brinkman number and the extensibility parameter on the thermal convection characteristics of FENE-P fluid flows are investigated in detail. Generally, the Brinkman number causes a fall in the Nusselt number, but a rise in the centerline temperature. The results reveal that during the cooling process the Nusselt number experiences a decrease with the Brinkman number, while the centerline temperature rises. However, during the heating process the former increases and the latter decreases. As the main innovation of this study, the results show a strong relation between the Nusselt number and the Brinkman number and also between the centerline temperature and the Brinkman number.
  1. Abdel-Wahed RM, Attia A, Hifni MA, Int. J. Heat Mass Transf., 27, 2397 (1984)
  2. Avci M, Aydin O, ISI Bilim. Tek. Derg., 28, 9 (2008)
  3. Aydin O, Energy Conv. Manag., 46(5), 757 (2005)
  4. Aydin O, Energy Conv. Manag., 46(18-19), 3091 (2005)
  5. Barletta A, Magyari E, Int. J. Heat Fluid Flow, 50, 26 (2007)
  6. Barletta A, di Schio ER, Zanchini E, Int. J. Heat Fluid Flow, 24, 874 (2003)
  7. Basu T, Roy D, Int. J. Heat Mass Transf., 28, 699 (1985)
  8. Bejan A, Convection Heat Transfer, 2013.
  9. Bhatti MS, J. Heat Transf. -Trans. ASME, 106, 895 (1984)
  10. Bird RB, Giacomin AJ, Annu. Rev. Chem. Biomol. Eng., 7, 479 (2016)
  11. Bird RB, Dotson PJ, Johnson NL, J. Non-Newton. Fluid Mech., 7, 213 (1980)
  12. Brinkman HC, Appl. Sci. Res., 2, 120 (1951)
  13. Chang SW, Yang TL, Huang RF, Sung KC, Int. J. Heat Mass Transf., 50(23-24), 4581 (2007)
  14. Coelho PM, Pinho FT, Int. J. Heat Mass Transf., 50, 3349 (2006)
  15. Coelho PM, Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 45(7), 1413 (2002)
  16. Dehkordi AM, Memari M, Energy Conv. Manag., 51(5), 1065 (2010)
  17. Eckert ERG, Drake RM, Analysis of Heat and Mass Transfer, 1987.
  18. Filali A, Khezzar L, Comput. Fluids., 84, 1 (2013)
  19. Kays WM, Crawford ME, Weigand B, Convective Heat and Mass Ttransfer, 2012.
  20. Maia CRM, Aparecido JB, Milanez LF, Int. J. Therm. Sci., 45, 1066 (2006)
  21. Norouzi M, Int. J. Therm. Sci., 108, 165 (2016)
  22. Norouzi M, Davoodi M, J. Thermophys. Heat Transf., 29, 632 (2015)
  23. Norouzi M, Kayhani MH, Nobari MRH, World Appl. Sci. J., 7, 285 (2009)
  24. Norouzi M, Daghighi SZ, Beg OA, Meccanica, 53, 817 (2018)
  25. Oliveira PJ, Acta Mech., 158, 157 (2002)
  26. Oliveira PJ, Pinho FT, J. Fluid Mech., 387, 271 (1999)
  27. Oliveira PJ, Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 121(1), 69 (2004)
  28. Ou JW, Cheng KC, AIAA/ASME 1974 Thermophysics and Heat Transfer Conference, 1974.
  29. Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 43(13), 2273 (2000)
  30. Pinho FT, Coelho PM, J. Non-Newton. Fluid Mech., 138(1), 7 (2006)
  31. Rao SS, Ramacharyulu NCP, Krishnamurty VVG, Appl. Sci. Res., 21, 185 (1969)
  32. Sakalis VD, Hatzikonstantinou PM, Kafousias N, Int. J. Heat Mass Transf., 45(1), 25 (2002)
  33. Sayed-Ahmed ME, Kishk KM, Int. Commun. Heat Mass Transf., 35, 1007 (2008)
  34. Shah RK, 3rd National Heat Mass Transfer Conference, Bombay, India, 11-75 1975.