화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.4, 293-307, November, 2018
Characterization of the viscoelastic model of in vivo human posterior thigh skin using ramp-relaxation indentation test
E-mail:
Characterization of viscoelastic properties of the human thigh skin can be utilized in many medical or engineering applications such as a surgical extension of the thigh skin, a tissue engineering, and a finite element modeling of thigh skin in a sitting posture. This study aims to determine the effective short- and long-term shear moduli of posterior thigh skin using ramp-relaxation test in a sitting posture. The effect of indentation location, the sitting posture, and the applied load (thigh weight) were investigated on the extracted effective shear moduli. We modeled the human skin by using the one- and two-term Prony series, and it was found that the generalized Maxwell model with two-term Prony series agreed well with experimental data. The effective shear moduli (short- and long-term) were extracted by fitting the total reaction force of the generalized Maxwell model to the experimental data using the Levenberg-Marquardt algorithm. The contour maps were used to show the spatial dependency of the effective shear moduli at the flat regions of posterior thigh skin. The contour maps of effective shear moduli show that maximum effective shear moduli locate near buttock’s center, while minimum effective shear moduli locate at the distal and medial posterior thigh. It is also found that the extracted effective short-term shear modulus varies between 3978.2 N/m2 and 13699.2 N/m2. On the other hand, the extracted effective long-term shear modulus differs between 2715.1 N/m2 and 9194.3 N/m2 for different sitting postures. Additionally, it is found that the observed increase in effective shear moduli could be attributed to the increase applied load, and leg angle.
  1. Alexander H, Cook TH, J. Invest. Dermatol., 69, 310 (1977)
  2. Bader DL, Bowker P, Biomaterials, 4, 305 (1983)
  3. Bae JE, Cho KS, J. Non-Newton. Fluid Mech., 235, 64 (2016)
  4. Baumgaertel M, Winter HH, Rheol. Acta., 28, 511 (1989)
  5. Benitez JM, Montans FJ, Comput. Struct., 190, 75 (2017)
  6. Buckle H, The Science of Hardness Testing and Its Research Applications, 1973.
  7. Chen CY, Yu CA, Hong TF, Chung YL, Li WL, Biosurf. Biotribol., 1, 62 (2015)
  8. Cho KS, Viscoelasticity of Polymers: Theory and Numerical Algorithms, 2016.
  9. Cho KS, Kwon MK, Lee JH, Kim SH, Korea-Aust. Rheol. J., 29(4), 249 (2017)
  10. Delalleau A, Josse G, Lagarde JM, Zahouani H, Bergheau JM, Skin Res. Technol., 14, 152 (2008)
  11. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG, J. Invest. Dermatol., 93, 353 (1989)
  12. Flynn C, Taberner A, Nielsen P, Biomech. Model. Mechanobiol., 10, 27 (2011)
  13. Flynn C, Taberner AJ, Nielsen PMF, Fels S, J. Mech. Behav. Biomed. Mater., 28, 484 (2013)
  14. Gabriel V, Kowalske K, Burns, 41, 796 (2015)
  15. Giavazzi S, Ganatea MF, Trkov M, Sustaric P, Rodic T, Geoenviron., 57, 1 (2010)
  16. Griffin M, Premakumar Y, Seifalian A, Butler PE, Szarko M, J. Vis. Exp., 118, 54872 (2016)
  17. Grujicic M, Pandurangan B, Arakere G, Bell WC, He T, Xie X, Mater. Des., 30, 4273 (2009)
  18. Hendriks FM, Brokken D, Oomens CWJ, Bader DL, Baaijens FPT, Med. Eng. Phys., 28, 259 (2006)
  19. Isaza J, Ramirez J, Procedia Eng., 110, 45 (2015)
  20. Jachowicz J, Mcmullen R, Prettypaul D, Skin Res. Technol., 13, 299 (2007)
  21. Jacquet E, Chambert J, Pauchot J, Sandoz P, Skin Res. Technol., 23, 491 (2017)
  22. Jain SM, Pandey K, Lahoti A, Rao PK, Indian J. Endocr. Metab., 17, 864 (2013)
  23. Jor JW, Parker MD, Taberner AJ, Nash MP, Nielsen PM, Wiley Interdiscip. Rev. Syst. Biol. Med., 5, 539 (2013)
  24. Kang MJ, Yoo HH, Int. J. Precis. Eng. Man., 18, 1253 (2017)
  25. Kearney SP, Khan A, Dai Z, Royston TJ, Phys. Med. Biol., 60, 6975 (2015)
  26. Koo TK, Hug F, J. Biomech., 48, 3539 (2015)
  27. Lee EH, Radok JRM, J. Appl. Mech., 27, 438 (1960)
  28. Li X, Ding L, Ma X, Li B, Liu H, analysis, International Conference on Human-Computer Interaction, 2017.
  29. Lima KMME, Costa JFS. Pereira CA, de Oliveira LF, Ultrasonography, 37, 3 (2018)
  30. Maurel W, Wu Y, Thalmann D, Thalmann NM, Biomechanical Models for Soft Tissue Simulation, 1998.
  31. Mayah AA, Biomechanics of Soft Tissues: Principles and Applications, 2018.
  32. Mazza E, Papes O, Rubin MB, Bodner SR, Binur NS, Biomech. Model. Mechanobiol., 4, 178 (2005)
  33. Mohamed A, Xing MM, Int. J. Burns Trauma., 2, 29 (2012)
  34. Ni Annaidh A, Bruyere K, Destrade M, Gilchrist MD, Ottenio M, J. Mech. Behav. Biomed. Mater., 5, 139 (2012)
  35. Pailler-Mattei C, Bec S, Zahouani H, Med. Eng. Phys., 30, 599 (2008)
  36. Parker MD, Jones LA, Hunter IW, Taberner A, Nash M, Nielsen P, J. Biomech. Eng., 139, 011004 (2017)
  37. Sandby-Moller J, Poulsen T, Wulf HC, Acta Derm. Venereol., 83, 410 (2003)
  38. Sneddon IN, Int. J. Eng. Sci., 3, 47 (1965)
  39. Tadini KA, Mercurio DG, Campos PMBGM, Braz. J. Pharm. Sci., 51, 901 (2015)
  40. Van Kuilenburg J, Masen MA, van der Heide E, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 227, 349 (2013)
  41. Weickenmeier J, Jabareen M, Int. J. Numer. Methods. Biomed. Eng., 30, 1238 (2014)
  42. Wu JZ, Dong RG, Smutz WP, Schopper AW, Bio-Med. Mater. Eng., 13, 373 (2003)
  43. Wu T, Hung A, Mithraratne K, IEEE. Trans. Vis. Comput. Graph., 20, 1519 (2014)
  44. Zhou B, Xu F, Chen C, Lu T, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 368, 679 (2010)