Journal of Polymer Science Part B: Polymer Physics, Vol.34, No.7, 1301-1315, 1996
Classification of Homogeneous Ethylene-Octene Copolymers Based on Comonomer Content
Ethylene-octene copolymers prepared by Dow’s INSITE(TM) constrained geometry catalyst technology present a broad range of solid-state structures from highly crystalline, lamellar morphologies to the granular morphology of low crystallinity copolymers. As the comonomer content increases, the accompanying tensile behavior changes from necking and cold drawing typical of a semicrystalline thermoplastic to uniform drawing and high recovery characteristic of an elastomer. Although changes in morphological features and tensile properties occur gradually with increasing comonomer content, the combined body of observations from melting behavior, morphology, dynamic mechanical response, yielding, and large-scale deformation suggest a classification scheme with four distinct categories. Materials with densities higher than 0.93 g/cc, type IV, exhibit a lamellar morphology with well-developed spherulitic superstructure. Type III polymers with densities between 0.93 and 0.91 g/cc have thinner lamellae and smaller spherulites. Type II materials with densities between 0.91 and 0.89 g/cc have a mixed morphology of small lamellae and bundled crystals. These materials can form very small spherulites. Type I copolymers with densities less than 0.89 g/cc have no lamellae or spherulites. Fringed micellar or bundled crystals are inferred from the low degree of crystallinity, the low melting temperature, and the granular, nonlamellar morphology.
Keywords:NARROWLY BRANCHED FRACTIONS;MORPHOLOGICAL CHARACTERIZATION;POLYETHYLENE;POLYMERS;LAMELLAR;LLDPE