Automatica, Vol.95, 172-179, 2018
Finite-horizon LQR controller for partially-observed Boolean dynamical systems
This paper proposes an approach for finite-horizon control of partially-observed Boolean dynamical systems (POBDS) with uncertain continuous control input and infinite observation space. To cope with the partial observability of states, the proposed method first maps the POBDS to an unnormalized belief space. The nonlinear dynamics in this continuous belief space are linearized over a nominal trajectory. Then, the optimal feedback controller is derived, based on the well-known linear quadratic regulator (LQR), to push the system to follow the nominal trajectory. This nominal trajectory is computed in a planning stage before starting execution, and updated efficiently during execution, whenever the system is found to deviate from the nominal trajectory. We prove that, under mild regularization conditions, the proposed controller approaches the cost of the nominal trajectory as the linearization error approaches zero. The performance of the proposed controller is demonstrated by numerical experiments with a Melanoma gene regulatory network observed through noisy gene expression measurements. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords:Finite horizon control;Partially-observed Boolean dynamical systems;Linear quadratic regulator;Gene regulatory networks