Biochemical and Biophysical Research Communications, Vol.503, No.4, 2380-2385, 2018
SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis
Light is the most important exogenous stimulus regulating plant growth and various developmental processes. Phytochromes, especially PHYTOCHROME B (PHYB) mediates the various light-mediated processes in Arabidopsis. SPATULA (SPT) is an important transcription factor, which has been reported previously to participate in temperature-mediated transition from seed dormancy to germination. Here we investigate the function of SPT in the floral transition under long day conditions and photomorphogenesis in Arabidopsis. In this study, spt-2 shows significantly delayed flowering time. But mutation of SPT in the background of phyb-1 rescues the phenotype of spt-2. The flowering time of double mutant of spt-2/phyb-1 is similar with the wild type. These results indicate that SPT promotes the transition from vegetative stage to floral stage and it regulates this transition in a PHYB-dependent manner. With qRT-PCR analysis, it is found that SPT regulates flowering time via FLC, SVP, FT and SOC1. Furthermore, SPT also controls photomorphogenesis. spt-2 displays shortened hypocotyls and increased chlorophylls contents compared with the wild type. These phenotypes are also rescued in the double mutant of spt-2/phyb-1. These results indicate that SPT is also involved in photomorphogenic development in Arabidopsis and SPT regulates photomorphogenesis in a PHYB-dependent manner. Collectively, SPT is not only a temperature responder but it is also an important light regulator during plant growth and development. (C) 2018 Elsevier Inc. All rights reserved.