Biomacromolecules, Vol.19, No.8, 3586-3593, 2018
Construction of Small-Sized, Robust, and Reduction-Responsive Polypeptide Micelles for High Loading and Targeted Delivery of Chemotherapeutics
Polypeptide micelles, though having been proved to be an appealing nanoplatform for cancer chemotherapy, are met with issues like inefficient drug encapsulation, gradual drug release, and low tumor cell selectivity and uptake. Here, we report on cRGD-decorated, small-sized, robust, and reduction-responsive polytyrosine micelles (cRGD-rPTM) based on poly(ethylene glycol)-b-poly(L-tyrosine)-lipoic acid (PEG-b-PTyr-LA) conjugate for high loading and targeted delivery of doxorubicin (Dox). Notably, cRGD-rPTM exhibited efficient loading of Dox, giving cRGD-rPTM-Dox with a drug loading content (DLC) of 18.5 wt % and a small size of 45 nm at a theoretical DLC of 20 wt %. cRGD-rPTM-Dox displayed reduction triggered drug release, high selectivity and superior antiproliferative activity toward alpha(v)beta(3) integrin positive MDA-MB-231 breast cancer cells (IC50 = 1.5 mu g/mL) to both nontargeted rPTM-Dox and clinical liposomal formulation (LP-Dox). cRGD-rPTM-Dox demonstrated a prolonged circulation time compared with the noncrosslinked cRGD-PTM-Dox control and significantly better accumulation in MDA-MB-231 breast tumor xenografts than nontargeted rPTM-Dox. Moreover, cRGD-rPTM-Dox at 6 mg Dox equiv/kg could remarkably suppress growth of MDA-MB-231 human breast tumor without inducing obvious side effects, outperforming both rPTM-Dox and LP-Dox. These reduction-responsive multifunctional polytyrosine micelles appear to be a viable and versatile nanoplatform for targeted chemotherapy.