화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.68, 117-123, December, 2018
Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors
E-mail:,
Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spin-coating process strongly affect chemical, physical, and electrical properties of AlOx insulators. Through the optimization of significant variables in process, an AlOx insulator with a leakage current value approximately 105 times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized AlOx was realized. Finally, by introducing the optimized AlOx insulators to solution-processed InOx TFTs, we successfully achieved InOx/AlOx TFTs with remarkably high average field-effect mobility of ∼52 cm2 V-1 s-1 and on/off current ratio of 106 at fabrication temperature of 250 °C.
  1. Kamiya T, Nomura K, Hosono H, Sci. Technol. Adv. Mater., 11, 1 (2010)
  2. Fortunato E, Barquinha P, Martins R, Adv. Mater., 24(22), 2945 (2012)
  3. Kim S, Choi YJ, Choi Y, Kang MS, Cho JH, Adv. Funct. Mater., 27, 170065 (2017)
  4. Yu XG, Marks TJ, Facchetti A, Nat. Mater., 15(4), 383 (2016)
  5. Pal BN, Dhar BM, See KC, Katz HE, Nat. Mater., 8(11), 898 (2009)
  6. Jo JW, Kim YH, Park J, Heo JS, Hwang S, Lee WJ, Yoon MH, Kim MG, Park SK, ACS Appl. Mater. Interfaces, 9, 35114 (2017)
  7. Kim MG, Kanatzidis MG, Facchetti A, Marks TJ, Nat. Mater., 10(5), 382 (2011)
  8. Hong GR, Lee SS, Jo Y, Choi MJ, Kang YC, Ryu BH, Chung KB, Choi Y, Jeong S, ACS Appl. Mater. Interfaces, 8, 29858 (2016)
  9. Park JH, Kim K, Yoo YB, Park SY, Lim KH, Lee KH, Baik HK, Kim YS, J. Mater. Chem. C, 1, 7166 (2013)
  10. Kim J, Lim SH, Kim YS, J. Am. Chem. Soc., 132(42), 14721 (2010)
  11. Park S, Kim CH, Lee WJ, Sung S, Yoon MH, Mater. Sci. Eng. R, 114, 1 (2017)
  12. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H, Nat. Mater., 10(1), 45 (2011)
  13. Meyers ST, Anderson JT, Hung CM, Thompson J, Wager JF, Keszler DA, J. Am. Chem. Soc., 130(51), 17603 (2008)
  14. Hwang YH, Seo JS, Yun JM, Park H, Yang S, Park SHK, Bae BS, NPG Asia Mater., 5, e45 (2013)
  15. Lim KH, Huh JE, Lee J, Cho NK, Park JW, Nam BI, Lee E, Kim YS, ACS Appl. Mater. Interfaces, 9, 548 (2017)
  16. Plassmeyer PN, Mitchson G, Woods KN, Johnson DC, Page CJ, Chem. Mater., 29, 2921 (2017)
  17. Lee KH, Park JH, Yoo YB, Han SW, Lee SJ, Baik HK, Appl. Phys. Express, 8, 081101 (2015)
  18. Lee KH, Han SW, Park JH, Yoo YB, Lee SJ, Baik HK, Song KM, Jpn. J. Appl. Phys., 55, 010304 (2016)
  19. Seo JS, Jeon JH, Hwang YH, Park H, Ryu M, Park SHK, Bae BS, Sci. Rep., 3, 3 (2013)
  20. Faber H, Lin YH, Thomas SR, Zhao K, Pliatsikas N, McLachlan MA, Amassian A, Patsalas PA, Anthopoulos TD, ACS Appl. Mater. Interfaces, 7, 782 (2015)
  21. Rim YS, Chen H, Song TB, Bae SH, Yang Y, Chem. Mater., 27, 5808 (2015)
  22. Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R, Shan F, RSC Adv., 5, 86606 (2015)
  23. Xu W, Cao H, Liang L, Xu JB, ACS Appl. Mater. Interfaces, 7, 14720 (2015)
  24. Liu GX, Liu A, Zhu HH, Shin B, Fortunato E, Martins R, Wang YQ, Shan FK, Adv. Funct. Mater., 25(17), 2564 (2015)
  25. Liu A, Liu GX, Zhu HH, Song HJ, Shin B, Fortunato E, Martins R, Shan FK, Adv. Funct. Mater., 25(46), 7180 (2015)
  26. Chiu FC, Adv. Mater. Sci. Eng., 2014, 1 (2014)
  27. Hasegawa A, Tanno T, Nogami S, Satou M, J. Nucl. Mater., 417, 491 (2011)
  28. Alberty RA, J. Biol. Chem., 244, 3290 (1969)
  29. Urabe T, Tsugoshi T, Tanaka M, J. Mass Spectrom., 44, 193 (2009)
  30. Sarpola A, Hietapelto V, Jalonen J, Jokela J, Laitinen RS, Ramo J, J. Mass Spectrom., 39, 1209 (2004)
  31. Brauer B, Zahn DRT, Ruffer T, Salvan G, Chem. Phys. Lett., 432(1-3), 226 (2006)
  32. Haque N, Cochrane RF, Mullis AM, Crystals, 7 (2017)
  33. Keith HD, Padden FJ, J. Appl. Phys., 34, 2409 (1963)
  34. Shtukenberg AG, Punin YO, Gunn E, Kahr B, Chem. Rev., 112(3), 1805 (2012)
  35. Gunn E, Small Molecule Banded Spherulites (Ph.D. Dissertation), University of Washington Seattle, Washington, USA, 2009.
  36. Hegde RR, Spruiell JE, Bhat GS, Polym. Int., 63, 1112 (2014)
  37. Wang Y, Liu XF, Peng J, Qiu F, RSC Adv., 5, 107970 (2015)
  38. Beekmans LGM, Vancso GJ, Polymer, 41(25), 8975 (2000)
  39. Niazi MR, Li R, Li Q, Kirmani AR, Abdelsamie M, Wang D, Pan W, Payne MM, Anthony JE, Smilgies DM, Thoroddsen ST, Giannelis EP, Amassian A, Nat. Commun., 6, 8598 (2015)
  40. Woo E, Lugito G, Polymers, 8, 329 (2016)
  41. Zhang CW, Lu L, Li WQ, Li LH, Zhou CR, Polym. Bull., 73(11), 2961 (2016)
  42. Viswanath V, Maity S, Bochinski JR, Clarke LI, Gorga RE, Macromolecules, 46(21), 8596 (2013)
  43. Egginger M, Bauer S, Schwodiauer R, Neugebauer H, Sariciftci NS, Monatsh. Chem. Chem. Mon., 140, 735 (2009)