- Previous Article
- Next Article
- Table of Contents
Journal of Polymer Science Part B: Polymer Physics, Vol.36, No.7, 1095-1105, 1998
Rheological properties and the interface in polycarbonate/impact modifier blends : Effect of modifier shell molecular weight
Core-shell impact modifiers are used to enhance the impact strength of thermoplastics such as polycarbonate. The shell of the modifier is designed specifically to interact with the matrix polymer because interfacial adhesion between the modifier and matrix is important in improving the impact strength. Several methods have been proposed to study the interactions at the modifier/matrix interface. One measure of this interaction is the strength of lap joints. The degree of interactions at the interface can be characterized as the thickness of the interfacial region where the chains of the two polymers mix. Yet another aspect is related to the effect of interfacial interactions on the dynamic mechanical properties of the blend. Previous studies have shown that the viscoelastic properties of these blends deviate from the emulsion models that have been proposed for such blends, The deviation of the measured viscoelastic behavior of these blends compared to that predicted by the models has been attributed to the formation of network structure of particles in the blend. The formation of the network structure is a consequence of larger effective volumes of the particles due to interactions at the interface with the matrix. This study provides a means of using rheological properties and the emulsion models to estimate the Extent of interaction at the modifier/matrix interface. In blends used in this study it can be shown that the interactions between the modifier and matrix extend far beyond the boundary between the two and the estimated effective volume fraction of modifier is much larger than the actual modifier content in the blend. The effective volume fraction is frequency dependent and decreases with increasing frequency. The data suggest that beyond certain frequencies the modifier no longer interacts with the matrix and the system has properties similar to the matrix with holes. The data are presented which indicate that, within the range studied, lower modifier shell molecular weight results in a higher level of interaction with polycarbonate.
Keywords:VISCOELASTIC PROPERTIES;POLYMER COMPOSITES;IMPACT MODIFIERS;MELT;BEHAVIOR;PMMA;POLYPROPYLENE;COPOLYMERS;MODULUS